
Changelog

Changes made in this version not seen in first lecture:
19 March 2019: tmeporarily invalid PTE (software support): correct
PPN in “OS page info” being a VPN instead

0

virtual memory 3: page cache / page
replacement

1

last time

page table tricks
allocate on demand
copy on write

mapping files — mmap
Linux: process memory is a list of maps
maps may or may not correspond to file
either private (copy on write) or shared (actually modify file)

page cache
everything potentially in memory has location on disk
for files: location is in the file
for everything else: allocate disk space (“swap space”)
goal: manage memory as a cache of stuff on disk
fully associative: all physical memory pages used for anything

2

the page cache

memory is a cache for disk

files, program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

3

the page cache

memory is a cache for disk

files, program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk?
possibly both

goal: manage this cache intelligently

3

memory as a cache for disk

“cache block” ≈ physical page

fully associative
any virtual address/file part can be stored in any physical page

replacement is managed by the OS

normal cache hits happen without OS
common case that needs to be fast

4

page cache components [text]

mapping: virtual address or file+offset → physical page
handle cache hits

find backing location based on virtual address/file+offset
handle cache misses

track information about each physical page
handle page allocation
handle cache eviction

5

page cache components

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

7

page cache components

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

8

virtual addr/file offset to physical page

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

9

virtual addr/file offset to physical page

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

9

virtual addr/file offset to physical page

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

9

Linux: forward mapping

process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

10

Linux: forward mapping

process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

11

Linux: forward mapping

process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

12

Linux: forward mapping

process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

13

minor and major faults

minor page fault
page is already in page cache
just fill in page table entry

major page fault
page not cached, need to allocate

14

Linux: reporting minor/major faults

$ /usr/bin/time --verbose some-command
Command being timed: "some-command"
User time (seconds): 18.15
System time (seconds): 0.35
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:19.57

...
Maximum resident set size (kbytes): 749820
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 230166
Voluntary context switches: 1423
Involuntary context switches: 53
Swaps: 0

...
Exit status: 0

15

Linux: forward mapping

process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

16

Linux: tracking files in memory

struct file {
...
struct inode *f_inode;
...

};
...
struct inode {

...
struct address_space i_data;
...

};
...
struct address_space {

...
struct radix_tree_root i_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mappings */
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

process control block (task_struct)

open file info (struct file)

file on disk info (struct inode)

address_space
cached physical pages for file
mmap() virtual addresses for file

17

Linux: tracking files in memory

struct file {
...
struct inode *f_inode;
...

};
...
struct inode {

...
struct address_space i_data;
...

};
...
struct address_space {

...
struct radix_tree_root i_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mappings */
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

process control block (task_struct)

open file info (struct file)

file on disk info (struct inode)

address_space
cached physical pages for file
mmap() virtual addresses for file

17

mapped pages (read/write, shared)

file data, cached in memory

file data on disk/SSD

18

page cache components

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

19

virtual address/file offset → location on disk

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

20

virtual address/file offset → location on disk

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

20

virtual address/file offset → location on disk

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

20

virtual address/file offset → location on disk

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

21

recall: Linux maps

$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

22

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

23

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

23

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

23

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)

flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

23

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)

flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

23

virtual address/file offset → location on disk

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

24

Linux: tracking swapped out pages

need to lookup location on disk

potentially one location for every virtual page

trick: store location in “ignored” part of page table entry
instead of physical page #, permission bits, etc., store offset on disk

25

page cache components

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

26

tracking physical pages: finding free pages

Linux has list of “least recently used” pages:
struct page {

...
struct list_head lru; /* list_head ~ next/prev pointer */
...

};

how we’re going to find a page to allocate
(and evict from something else)

later — what this list actually looks like (how many lists, …)

27

page cache components

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

28

page cache components

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

28

tracking physical pages: finding mappings

want to evict a page? remove from page tables, etc.

need to track where every page is used!

29

Linux: reverse mapping (file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

per-physical page info
(struct page) page number

given page number
find references to that page
(e.g. to remove/change them)

30

Linux: reverse mapping (non-file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

linked list of mmap regions
(anon_vma)

page table

per-physical page info
(struct page) page number

given non-file page
(heap, copied-on-write copy of file, etc.)
find references to that page
(may be multiple because of fork, etc.)

31

list of allocations per page

naive solution: seperate list for each page?
a lot of overhead (many tens of bytes per 4K page?)

but, trick: many pages ‘copied’ at the same time (e.g. fork)

idea: share list between all pages
initially: list one of mmap region
on fork: add to existing list; create a new one

32

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

33

page replacement

step 1: evict a page to free a physical page

step 2: load new, more important in its place

34

evicting a page

find a ‘victim’ page to evict

remove victim page from page table, etc.
every page table it is referenced by
every list of file pages
…

if needed, save victim page to disk

35

page cache components

virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

36

page replacement goals

hit rate: minimize number of misses

throughput: minimize overhead/maximize performance

fairness: every process/user gets its ‘share’ of memory

will start with optimizing hit rate

37

max hit rate ≈ max throughput

optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

38

max hit rate ≈ max throughput

optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

38

being proactive?

can avoid misses by “reading ahead”
guess what’s needed — read in ahead of time
wrong guesses can have costs besides more cache misses

we will get back to this later

for now — only access/evict on demand

39

optimizing for hit-rate

assuming:
we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

40

optimizing for hit-rate

assuming:
we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

40

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

41

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

41

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

41

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

41

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

41

predicting the future?

can’t really…

look for common patterns

42

the working set model

one common pattern: working sets

at any time, program is using a subset of its memory
set of running functions
their local variables, (parts of) global data structure

subset called its working set

rest of memory is inactive

43

cache size versus miss rate

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications” 44

working sets and running many programs

give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacemnet policy: identify working sets (how?)

replace anything that’s not in in it

45

working sets and running many programs

give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacemnet policy: identify working sets (how?)

replace anything that’s not in in it

45

working set model and phases

what happens when a program changes what it’s doing?

e.g. finish parsing input, now process it

phase change — discard one working set, give another

phase changes likely to have spike of cache misses
whatever was cached, not what’s being accessed anymore
maybe along with change in kind of instructions being run

46

evidence of phases (gzip)

Sherwood et al, “Discovering and Exploiting Program Phases” 47

evidence of phases (gcc)

Sherwood et al, “Discovering and Exploiting Program Phases” 48

estimating working sets

working set ≈ what’s been used recently
assuming not in phase change…

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

49

using working set estimates

one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

50

using working set estimates

one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

50

using working set estimates

one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

50

practically optimizing for hit-rate

recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

51

practically optimizing for hit-rate

recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

51

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

52

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

52

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

52

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

52

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

52

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

53

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

53

least recently used (exercise)

A B A D C B D B C D A

1
2
3

54

aside: Zipf model

working set model makes sense for programs

but not the only use of caches

example: Wikipedia — most popular articles

55

Wikipedia page views for 1 hour

100 101 102 103 104 105 106

Rank

100

101

102

103

104

105

Vi

ew
s

NOTE: log-log-scale 56

Zipf distribution

Zipf distribution: straight line on log-log graph of rank v. count

a few items a much more popular than others
most caching benefit here

long tail: lots of items accessed a very small number of times
more cache less efficient — but does something
not like working set model, where there’s just not more

57

good caching strategy for Zipf

keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

58

good caching strategy for Zipf

keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

58

alternative policies for Zipf

least frequently used
very simple policy
if pure Zipf distribution — what you want
practical problem: what about changes in popularity?

least frequently used + adjustments for ‘recentness’

more?

59

models of reuse

working set/locality
active things are likely to be active soon
what’s popular changes over time
want: something like least-recently used

Zipf distribution
some things are just popular always
want: something like least-frequently used

other models?
when X is loaded, Y is always needed?

want: identify pairs of related values, load/discard together
some things are only used once

want: identify these, do not cache

60

pure LRU implementation

implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
mechanism: make every access page fault
which will make everything really slow

61

pure LRU implementation

implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
mechanism: make every access page fault
which will make everything really slow

61

page fault for every access?

want every access to page fault? make every page invalid
…but want access to happen eventually
…which requires marking page as valid
…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

62

page fault for every access?

want every access to page fault? make every page invalid
…but want access to happen eventually
…which requires marking page as valid
…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

62

page fault for every access?

want every access to page fault? make every page invalid
…but want access to happen eventually
…which requires marking page as valid
…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower
62

so, what’s practical

probably won’t implement LRU — too slow

what can we practically do?

63

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

64

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

64

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

64

tools for tracking accesses

approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses:
mark page invalid, if page fault happens make valid and record ‘accessed’
‘accessed’ or ‘referenced’ bit set by HW

64

recording accesses

goal: “check is this physical page still being used?”

software support: temporarily mark page table invalid
use resulting page fault to detect “yes”

hardware support: accessed bits in page tables
hardware sets to 1 when accessed

65

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info
processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

66

temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time Y …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault

update page info +
mark present

66

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

67

accessed bits: multiple processes

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00483 1 1 0 … 0x4442
… … … … … …

page table for program 2
OS needs to clear+checkall accessed bitsfor the physical page

68

dirty bits

“was this part of the mmap’d file changed?”

“is the old swapped copy still up to date?”

software support: temporarily mark read-only

hardware support: dirty bit set by hardware
same idea as accessed bit, but only changed on writes

69

x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

70

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

71

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

71

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

71

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

72

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

72

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

72

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

72

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

72

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

72

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

72

73

backup slides

74

Linux: physical page → file → PTE

Linux tracking where file pages are in page tables:
struct page {

...
struct address_space *mapping;
pgoff_t index; /* Our offset within mapping. */
...

};
struct address_space {

...
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

};

tree of mappings lets us find vm_area_structs and PTEs

rather complicated look up (but writing ot disk is already slow)
76

detecting accesses

non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

77

detecting accesses

non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

77

detecting accesses

non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

77

x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

78

multiple mappings?

page can have many page table entries
file mmap’d in many processes (e.g. 10 instances of emacs.exe)
copy-on-write pages after fork
address in kernel memory + address in user memory?
…

want to check all the accessed bits

79

aside: detecting write accesses

for updating mmap files/swap want to detect writes

same options as detect accesses in general:

software-only: temporarily set page table entry read-only
page fault handler records write + sets as writeable

hardware assisted: hardware sets dirty bit in page table
OS scans dirty bits later

80

	memory as a cache for disk
	page cache components

	handling evictions
	on page replacement choices
	page replacement policy goals
	Belady's MIN
	the working set model
	LRU
	aside: Zipf model
	cache model summary
	implementing pure LRU

	implementing LRU-like page replacement
	tracking accesses
	accessed/dirty bit
	approximating LRU: second-chance

	Backup slides
	accessed/dirty bit (text version)

