
virtual memory 4 / I/O

1

paging homework note

pagingtest tests both parts

some copy-on-write tests run out of memory if no copy on write

some copy-on-write tests can hang if they run out of memory
fork fails and the error handling code for this isn’t great

copy-on-write tests failing or hanging after printing ‘fork failed’ is
okay

kernel panics are not okay

3

last time

page cache data structures
cache hit: page table + file→cached page lookup
cache miss: location on disk (filesystem or record in invalid PTE)

working set model
set of ‘currently used’ pages
changes throughout program execution
easy approximation: most recently used pages

alternate model: Zipf/power law
page replacement choices: hit rate v. throughput v. fairness
practical LRU:

detect accesses via temporarily invalid PTE or accessed/referenced bit
look for not-recently used stuff

4

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

5

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

5

approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

5

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

6

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

6

second chance example

A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

6

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

7

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

7

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

7

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

7

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

7

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

7

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

7

tracking usage: CLOCK (view 1)

page #4: last referenced bits: Y Y Y…
page #5: last referenced bits: N N N…
page #6: last referenced bits: N Y Y…
page #7: last referenced bits: Y N Y…
page #8: last referenced bits: Y Y N…
page #1: last referenced bits: Y Y Y…
page #2: last referenced bits: N N N…
page #3: last referenced bits: Y Y N…

ordered list
of physical pages

periodically:
take page from bottom of list
record current referenced bit
clear reference bit for next pass
add to top of list

8

tracking usage: CLOCK (view 2)

page #1:
last ref. bits: Y Y Y…

page #2:
last ref. bits: N N N…

page #3:
last ref. bits: N Y Y…

page #4:
last ref. bits: Y N Y…

page #5:
last ref. bits: Y Y N…

page #6:
last ref. bits: Y Y Y…

page #7:
last ref. bits: N N N…

page #8:
last ref. bits: Y Y N…

9

lazy replacement?

so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

10

lazy replacement?

so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

10

non-lazy writeback

what happens when a computer loses power

how much data can you lose?

if we neve run out of memory…all of it?
no changed data written back

solution: scan for dirty bits periodicially and writeback

11

non-lazy eviction

so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

12

non-lazy eviction

so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

12

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

13

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

13

problems with LRU

question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

13

CLOCK-Pro: special casing for one-use pages

by default, Linux tries to handle scanning of files
one read of file data — e.g. play a video, load file into memory

basic idea: don’t consider pages active until the second access

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

14

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

15

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages
initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

15

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

15

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

15

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

15

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

15

CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

15

default Linux page replacement summary

Figure: https://linux-mm.org/PageReplacementDesign 16

https://linux-mm.org/PageReplacementDesign

default Linux page replacement summary

identify inactive pages — guess: not going to be accessed soon
file pages which haven’t been accessed more than once, or
any pages which haven’t been accessed recently

some minimum threshold of inactive pages
add to inactive list in background
detecting references — scan referenced bits
(I thought Linux marked as invalid — but wrong: not on x86)
detect enough references — move to active

oldest inactive page still not used → evict that one
otherwise: give it a second chance

17

being proactive

previous assumption: load on demand

why is something loaded?
page fault
maybe because application starts

can we do better?

18

readahead

program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

19

readahead

program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

19

readahead heuristics

exercise: devise an algorithm to detect to do readahead.
how to detect the reading pattern?
when to start reads?
how much to readahead?
what state to keep?

20

Linux readahead heuristics — how much

how much to readahead?

Linux heuristic: count number of cached pages from before

guess we should read about that many more
(plus minimum/maximum to avoid extremes)

goal: readahead more when applications are using file more

goal: don’t readahead as much with low memory

21

Linux readahead heuristics — when

track “readahead windows” — pages read because of guess:

|<−−−−− async_size −−−−−−−−−|
|−−−−−−−−−−−−−−−−−−− size −−−−−−−−−−−−−−−−−−−−>|
|==================#===========================|
^start ^page marked with PG_readahead

when async_size pages left, read next chunk
marked page = detect reads to this page

one option: make page temporary invalid

idea: keep up with application, but not too far ahead
22

thrashing

what if there’s just not enough space?
for program data, files currently being accessed

always reading things from disk

causes performance collapse — disk is really slow

known as thrashing

23

‘fair’ page replacement

so far: page replacement about least recently used

what about sharing fairly between users?

24

sharing fairly?

process A
4MB of stack+code, 16MB of heap
shared cached 24MB file X

process B
4MB of stack+code, 16MB of heap
shared cached 24MB file X

process C
4MB of stack+code, 4MB of heap
cached 32MB file Y

process D+E
4MB of stack+code (each), 70MB of heap (each)
but all heap + most of code is shared copy-on-write

25

accounting pages

shared pages make it difficult to count memory usage

Linux cgroups accounting (mostly): last touch
count shared file pages for the process that last ‘used’ them
…as detected by page fault for page

26

Linux cgroup limits

Linux “control groups” of processes

can set memory limits for group of proceses:

low limit: don’t ‘steal’ pages when group uses less than this
always take pages someone is using (unless no choice)

high limit: never let group use more than this
replace pages from this group before anything else

…

27

Linux cgroups

Linux mechanism: seperate processes into groups:

webserver webapp …
cgroup website

bash (shell) ls …

cgroup login

can set memory and CPU and …shares for each group

28

Linux cgroup memory limits

m
em

or
y
us
ag
e

low limit

high limit

max

0 GB

memory capacity
actively deallocate pages cgroup is using

if other processes need memory,
take from this group

do not take from this group
for other groups
(even if pages not recently used)

29

page cache/replacement summary

program memory + files — swapped to disk, cached in memory
mostly, assume working set model

keep (hopefully) small active set in memory
least recently used variants

special cases for non-LRU-friendly patterns (e.g. scans)
maybe more we haven’t discussed?

being proactive (writeback when idle, readahead, pool of pre-evicted
pages)
handling non-miss-rate goals

fair replacement: limit active memory per user?
probably more we haven’t discussed here? optimizing throughput? fair
throughput between users?

30

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

31

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

31

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer

read char
from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

31

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

31

recall: kernel buffering (reads)

program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

31

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

32

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

32

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

32

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

32

recall: kernel buffering (writes)

program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

32

recall: layering

application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

33

ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers

34

devices as files

talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

35

example device files from a Linux desktop

/dev/snd/pcmC0D0p — audio playback
configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure

36

devices: extra operations?

read/write/mmap not enough?
audio output device — set format of audio?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

extra POSIX file descriptor operations:
ioctl (general I/O control)
tcget/setaddr (for terminal settings)
fcntl
…

37

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

38

device driver flow
thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

38

device driver flow
thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

38

xv6: device files

struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];
table of devices
device file uses entry in devsw array

filesystem stores name to index lookup

similar scheme used on ‘real’ Unix/Linux
files referencing major/minor device number
table of device numbers in kernel

39

xv6: console devsw

code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is a constant

consoleread/consolewrite: run when you read/write console

40

xv6: console devsw

code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is a constant

consoleread/consolewrite: run when you read/write console

40

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

41

xv6: console top half (read)

int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){

if(myproc()−>killed){
...
return −1;

}
sleep(&input.r, &cons.lock);

}
...

}
release(&cons.lock)
...

} 42

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

43

xv6: console top half (read)

int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

} 44

xv6: console top half (read)

int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

} 44

xv6: console top half

wait for buffer to fill
no special work to request data — keyboard input always sent

copy from buffer

check if done (newline or enough chars), if not repeat

45

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

46

xv6: console interrupt (one case)

void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: atually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

47

xv6: console interrupt (one case)

void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: atually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

47

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send or queue I/O operation
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store and return request result

device hardware

trap handler “bottom half”

48

xv6: console interrupt reading

kbdintr fuction actually reads from device

adds data to buffer (if room)

wakes up sleeping thread (if any)

49

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

50

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

50

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

50

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

50

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

50

bus adaptors

processor
interrupt
controller

memory bus

other processors… actual memory

other devices
or

other bus adaptors

bus adaptor

other devices

device controller
status
read?
write?…

control registers buffers/queues

external hardware?

different bus

51

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

52

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

52

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

52

device as magic memory (2)

example: display controller

write to pixels to magic memory location — displayed on screen

other memory locations control format/screen size

example: network interface

write to buffers

write “send now” signal to magic memory location — send data

read from “status” location, buffers to receive
53

what about caching?

caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

54

what about caching?

caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

54

what about caching?

caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

54

aside: I/O space

x86 has a “I/O addresses”

like memory addresses, but accessed with different instruction
in and out instructions

historically — and sometimes still: separate I/O bus

more recent processors/devices usually use memory addresses
no need for more instructions, buses
always have layers of bus adaptors to handle compatibility issues
other reasons to have devices and memory close (later)

55

xv6 keyboard access

two control registers:
KBSTATP: status register (I/O address 0x64)
KBDATAP: data buffer (I/O address 0x60)

// inb() runs 'in' instruction: read from I/O address
st = inb(KBSTATP);
// KBS_DIB: bit indicates data in buffer
if ((st & KBS_DIB) == 0)
return −1;

data = inb(KBDATAP); // read from data --- *clears* buffer

/* interpret data to learn what kind of keypress/release */

56

programmed I/O

“programmed I/O”: write to or read from device controller buffers
directly

OS runs loop to transfer data to or from device controller

might still be triggered by interrupt
new data in buffer to read?
device processed data previously written to buffer?

57

direct memory access (DMA)

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller

external hardware?

observation: devices can read/write memory

can have device copy data to/from memory

58

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying
from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

59

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying
from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

59

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying
from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

59

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying
from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

59

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying
from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

59

direct memory access (DMA)

much faster, e.g., for disk or network I/O

avoids having processor run a loop

allows device to use memory as very large buffer space

allows device to read/write data as it needs/gets it

allows device to put data where OS wants it directly (maybe)

60

direct memory access protocol

device stores buffer address instead of buffer

OS’s job: allocate buffer, keep around while data being transferred

end of transfer indicated via interrupt and/or control registers

61

IOMMUs

typically, direct memory access requires using physical addresses
devices don’t have page tables
need contiguous physical addresses (multiple pages if buffer >page size)
devices that messes up can overwrite arbitrary memory

recent systems have an IO Memory Management Unit
“pagetables for devices”
allows non-contiguous buffers
enforces protection — broken device can’t write wrong memory location
helpful for virtual machines

62

IOMMUs

typically, direct memory access requires using physical addresses
devices don’t have page tables
need contiguous physical addresses (multiple pages if buffer >page size)
devices that messes up can overwrite arbitrary memory

recent systems have an IO Memory Management Unit
“pagetables for devices”
allows non-contiguous buffers
enforces protection — broken device can’t write wrong memory location
helpful for virtual machines

63

hard drive interfaces

hard drives and solid state disks are divided into sectors

historically 512 bytes (larger on recent disks)

disk commands:
read from sector i to sector j
write from sector i to sector j this data

typically want to read/write more than sector— 4K+ at a time

64

filesystems

filesystems: store hierarchy of directories on disk
disk is a flat list of blocks of data

given a file (identified how?), where is its data?
which sectors? parts of sectors?

given a directory (identified how?), what files are in it?
metadata: names, owner, permissions, size, …of file

making a new file: where to put it?
making a file/directory bigger: where does new data go?

65

the FAT filesystem

FAT: File Allocation Table

probably simplest widely used filesystem (family)

named for important data structure: file allocation table

66

FAT and sectors

FAT divides disk into clusters
composed of one or more sectors
sector = minimum amount hardware can read

cluster: typically 512 to 4096 bytes

a file’s data is stored in clusters

reading a file: determine the list of clusters

67

FAT: the file allocation table

big array on disk, one entry per cluster

each entry contains a number — usually “next cluster”
cluster num. entry value
0 4
1 7
2 5
3 1434… …
1000 4503
1001 1523… …

68

FAT: reading a file (1)

get (from elsewhere) first cluster of data
linked list of cluster numbers
next pointers? file allocation table entry for cluster

special value for NULL
cluster num. entry value
… …
10 14
11 23
12 54
13 -1 (end mark)
14 15
15 13
… …

file starting at cluster 10 contains data in:
cluster 10, then 14, then 15, then 13

69

FAT: reading a file (2)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st
er

nu
m
be
r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

70

FAT: reading a file (2)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st
er

nu
m
be
r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

70

FAT: reading a file (2)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st
er

nu
m
be
r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

70

FAT: reading files

to read a file given it’s start location

read the starting cluster X

get the next cluster Y from FAT entry X

read the next cluster

get the next cluster from FAT entry Y

…

until you see an end marker

71

start locations?

really want filenames

stored in directories!

in FAT: directory is a list of:

(name, starting location, other data about file)

72

finding files with directory

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st
er

nu
m
be
r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

73

finding files with directory

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st
er

nu
m
be
r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

73

finding files with directory

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st
er

nu
m
be
r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

73

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

74

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

74

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

74

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

74

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

74

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

74

aside: FAT date encoding

seperate date and time fields (16 bits, little-endian integers)

bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour

bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

75

FAT directory entries (from C)

struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File sttribute
uint8_t DIR_NTRes; // Set value to 0, never chnage this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word fo this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // 32-bit DWORD hoding this file's size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

76

FAT directory entries (from C)

struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File sttribute
uint8_t DIR_NTRes; // Set value to 0, never chnage this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word fo this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // 32-bit DWORD hoding this file's size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

76

FAT directory entries (from C)

struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File sttribute
uint8_t DIR_NTRes; // Set value to 0, never chnage this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word fo this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // 32-bit DWORD hoding this file's size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

76

FAT directory entries (from C)

struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File sttribute
uint8_t DIR_NTRes; // Set value to 0, never chnage this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word fo this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // 32-bit DWORD hoding this file's size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

76

trees of directories

roothomeag8t

cr4bd

mst3k

77

nested directories

foo/bar/baz/file.txt

read root directory entries to find foo

read foo’s directory entries to find bar

read bar’s directory entries to find baz

read baz’s directory entries to find file.txt

78

the root directory?

but where is the first directory?

79

80

backup slides

81

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

82

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

82

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

82

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

82

swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

82

POSIX: everything is a file

the file: one interface for
devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

83

the file interface

open before use
setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

84

the file interface

open before use
setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

84

	implementing LRU-like page replacement
	approximating LRU: second-chance
	approximating LRU: SEQ
	approximating LRU: CLOCK

	faster allocation: dirty writeback and free lists
	non-LRU patterns
	read once patterns
	readahead

	thrashing
	`fair' page replacement
	page cache/replacement summary
	device driver interfaces
	review: everything is a file

	devices as files
	device driver flow chart
	example top/bottom half

	device interfaces generally
	direct-memory access
	IOMMUs

	disk sectors
	filesystem problems
	the FAT filesystem
	intro and file allocation table
	reading a file
	directories are files

	backup slides
	swapping timeline
	everything is a file (full)

