/0

last time (1)

LRU approximations (part 1)

second chance
ordered list of pages

use page on list the longest if not referenced
otherwise clear referenced bit, put back on list

SEQ (active + inactive list, references on inactive move to active)
ordered list of active, inactive pages
use page on inactive list longer
move pages from inactive to active whenever referenced
avoid checking references to common active pages

last time (2)

LRU approximations (part 2)

CLOCK algorithms (scan all pages periodically; keep history of
references)

scan through all pages over time (when? OS choice)
record if referenced; clear referenced bit

use history of whether it was referenced to make decisions
lots of choices for details

last time (3)

being proactive

readahead — guess future accesses

writeback early — keep disk up to date

pools of pre-evicted pages

can take advantage of idle CPU/IO device time to speed up future
accesses

non-LRU patterns
example: scanning through large file
example: reading file exactly once to load it
possible policy: CLOCK-PRO: kepe pages ‘inactive’ until two references
idea: detect ‘bad’ (for LRU) access patterns, do non-LRU thing for them
only

last time (4)

Unix: devices represented as files

extra file operations (ioctl, etc.) for ‘weird’ things
eject DVD, change whether terminal echos, etc.

Linux example: file operations

(selected subset — table of pointers to functions)
struct file_operations {
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *]
ssize_t (*write) (struct file *, const char __user *,x
size_t, loff_t *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned 1c
int (*mmap) (struct file *, struct vm_area_struct *);
unsigned long mmap_supported_flags;
int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

b5

special case: block devices

devices like disks often have a different interface

unlike normal file interface, works in terms of ‘blocks’
block size usually equal to page size

for working with page cache
read /write page at a time

Linux example: block device operations

struct block_device_operations {
int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page) (struct block_device *,
sector_t, struct page *, bool);
int (*ioctl) (struct block_device *, fmode_t, unsigned, un

I

read /write a page for a sector number (= block number)

device driver flow

get 1/0 request

read/write/... system call or
page cache miss/eviction...

Y

Y

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

Y

send or queue |/O operation
put thread to sleep (if needed)

v

store and return request result

A

update buffers

-{ wake up thread (if needed)

send more to device (if needed)

A

get interrupt from device

4

device hardware

device driver flow

thread making read/write/etc. “top half”

get 1/0 request

read /write/... system call or
page cache miss/eviction...

store and return request result

Y

A

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

Y

send or queue |/O operation
put thread to sleep (if needed)

update buffers

-{ wake up thread (if needed)

send more to device (if needed)

A

get interrupt from device

4

device hardware

device driver flow
thread making read/write/etc. “top half”

get 1/0 request

read /write/... system call or > store and return request result

page cache miss/eviction... i

Y

check if satisfied from buffers trap handler E)Ottom half

(e.g. previous keypresses to keyboard)

update buffers
v -1 wake up thread (if needed)
- | send more to device (if needed)

send or queue |/O operation

A

put thread to sleep (if needed)

get interrupt from device

| i
A4 Y :

device hardware

xvb: device files (1)

struct devsw {
int (*read) (struct inode*, char*, 1int);
int (*write) (struct inode*, char*, 1int);

+s
extern struct devsw devsw[];

inode = represents file on disk

pointed to by struct file referenced by fd

10

xvb: device files (2)

struct devsw {
int (*read) (struct inode*, char*, 1int);
int (*write) (struct inode*, char*, 1int);

}s
extern struct devsw devsw[];

array of types of devices

special type of file on disk has index into array
“device number”
created via mknod () system call

similar scheme used on real Unix/Linux
two numbers: major + minor device number

11

xv0: console devsw

code run at boot:

devsw[CONSOLE] .write = consolewrite;
devsw[CONSOLE] .read = consoleread;

CONSOLE is the constant 1

12

xv0: console devsw

code run at boot:

devsw[CONSOLE] .write = consolewrite;
devsw[CONSOLE] .read = consoleread;

CONSOLE is the constant 1

consoleread /consolewrite: run when you read/write console

12

device driver flow

get 1/0 request

read/write/... system call or
page cache miss/eviction...

Y

Y

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

Y

send or queue |/O operation
put thread to sleep (if needed)

v

store and return request result

A

update buffers

-{ wake up thread (if needed)

send more to device (if needed)

A

get interrupt from device

4

device hardware

13

xvb: console top half (read)

int

{

target = n;
acquire(&cons. lock);
while(n > 0){
while(input.r == dnput.w){
if(myproc()—>killed) {
return —1;
}

sleep(&input.r, &cons.lock);
+

}

release(&cons. lock)

consoleread(struct inode *ip, char *dst, 1int n)

if at end of buffer
r = reading location, w = writing location

put thread to sleep

14

device driver flow

get 1/0 request

read/write/... system call or
page cache miss/eviction...

Y

Y

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

Y

send or queue |/O operation
put thread to sleep (if needed)

v

store and return request result

A

update buffers

-{ wake up thread (if needed)

send more to device (if needed)

A

get interrupt from device

4

device hardware

15

xvb: console top half (read)

int
consoleread(struct inode *ip, char *dst, 1int n)
{
target = n;
acquire(&cons. lock);
while(n > 0){ copy from kernel buffer

c = dnput.buf[input.r++ % INPUT_EtO userlauﬁér(passed Uaread)

*dst++ = c;
if (c == '"\n'")
break;
}

release (&cons. lock)

return target — n;

xvb: console top half (read)

int
consoleread(struct inode *ip, char *dst, 1int n)

{

target = n;

acquire(&cons. lock);
while(n > 0){ copy from kernel buffer

to user buffer (passed to read)

c = dinput.buf[input.r++ % INPUT_H

*dst++ = c;
if (c == '"\n'")
break;
}

release (&cons. lock)

return target — n;

xv0h: console top half

wait for buffer to fill
no special work to request data — keyboard input always sent

copy from buffer

check if done (newline or enough chars), if not repeat

17

device driver flow

get 1/0 request

read/write/... system call or
page cache miss/eviction...

Y

Y

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

Y

send or queue |/O operation
put thread to sleep (if needed)

v

store and return request result

A

update buffers

-{ wake up thread (if needed)

send more to device (if needed)

A

get interrupt from device

4

device hardware

18

xvb: console interrupt (one case)

void
trap(struct trapframe *tf) {

éW%tch(tf—>trapno) {
Caéé . T_IRQO + IRQ_KBD:
kbdintr () ;
lapcieoi();
break;
}
+

kbdintr: atually read from keyboard device
lapcieoi: tell CPU “I'm done with this interrupt”

19

xvb: console interrupt (one case)

void
trap(struct trapframe *tf) {

éW%tch(tf—>trapno) {
Caéé . T_IRQO + IRQ_KBD:
kbdintr();
lapcieoi();
break;
ks
h

kbdintr: atually read from keyboard device
lapcieoi: tell CPU “I'm done with this interrupt”

19

device driver flow

get 1/0 request

read/write/... system call or
page cache miss/eviction...

Y

Y

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

Y

send or queue |/O operation
put thread to sleep (if needed)

v

store and return request result

A

update buffers

-+ wake up thread (if needed)

send more to device (if needed)

A

get interrupt from device

4

device hardware

20

xvb: console interrupt reading

kbdintr fuction actually reads from device

adds data to buffer (if room)

wakes up sleeping thread (if any)

21

connecting devices

processor

other processors...

interrupt
controller

actual memory

memory bus

device controller

other devices

control registers

buffers/queues

status
read?
write?

external hardware?

22

connecting devices

control registers have memory addresses

actual memory

ry bus

pre looks like write to memory
- actually changes value in device controller
controller L

control registers

device controller

other devices

0x80004800:

status

buffers/queues

Ox80004808:

read?

Ox80004810:

write?

external hardware?

22

connecting devices

control registers might not really be registers
e.g. maybe writing to write? “control register”

ctual memory

IS
actually JUSt sends the value the external hardware
controller |
I device controller other devices
control registers
& buffers/queues

Ox80004800:status
Ox80004808:read?
Ox80004810:write?

external hardware?

22

connecting devices

other processors...

processor

memory bus

actual memory

interrupt

controller

control registers

device controller

other devices

buffers/queues

buffers/queues will also have

memory addresses

WITLE !

external hardware?

22

connecting devices

processor

other processors...

interrupt
controller

memory bus

actual memory

control registers

device controller

other devices

status

buffers/queues

read?
a o}

way to send “please interrupt” signal
component of processor decides when to handle
(deals with ordering, interrupt disabling,
which of several processors handles it, .., etc.)

22

bus adaptors

other processors...

processor

actual memory

memory bus

interrupt

controller

bus adaptor

different bus

other devices

control registers

status
read?
write?

device controller

buffers/queues

other devices
or
other bus adaptors

23

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller
read from magic memory location — get last keypress/release
reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven't read

24

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller
read from magic memory location — get last keypress/release
reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven't read

24

devices as magic memory (1)

devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller
read from magic memory location — get last keypress/release
reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven't read

24

device as magic memory (2)

example: display controller
write to pixels to magic memory location — displayed on screen

other memory locations control format/screen size

example: network interface
write to buffers
write “send now" signal to magic memory location — send data

read from “status” location, buffers to receive

25

what about caching?

caching “last keypress/release”?

| press ‘h', OS reads ‘h’, does that get cached?

26

what about caching?

caching “last keypress/release”?
| press ‘h', OS reads ‘h’, does that get cached?

.| press ‘e’, OS reads what?

26

what about caching?

caching “last keypress/release”?
| press ‘h', OS reads ‘h’, does that get cached?

.| press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

26

aside: 1/0 space

x86 has a “l/O addresses”

like memory addresses, but accessed with different instruction
in and out instructions

historically — and sometimes still: separate 1/O bus
more recent processors/devices usually use memory addresses
no need for more instructions, buses

always have layers of bus adaptors to handle compatibility issues
other reasons to have devices and memory close (later)

27

xvb keyboard access

two control registers:

KBSTATP: status register (1/O address Ox64)
KBDATAP: data buffer (1/O address 0x60)

// inb() runs 'in' instruction: read from I/O address
st = inb(KBSTATP);
// KBS_DIB: bit indicates data in buffer
if ((st & KBS_DIB) == 0)
return —1;
data = inb(KBDATAP); // read from data --- *clears* buffer

/* interpret data to learn what kind of keypress/release */

28

programmed 1/0

“programmed 1/Q": write to or read from device controller buffers
directly

OS runs loop to transfer data to or from device controller

might still be triggered by interrupt
new data in buffer to read?
device processed data previously written to buffer?

29

direct memory access (DMA)

processor

other processors...

interrupt
controller

memory bus

actual memory

device controller

other devices

external hardware?

observation: devices can read/write memory

can have device copy data to/from memory

30

direct memory access (DMA)

processor

interrupt
controller

actual memory

memory bus

control registers

device controller other devices

status

;ﬁﬁ’&ﬁ/queues

read?

write?

buffer addr

| evternal hardware? |

31

direct memory access (DMA)

processor

actual memory

memory bus

interrupt

controller

OS chooses
memory address

(this example: 0x9000 (physical))

device controller

other devices

control regis};ers

M/queues

status
read? /
write? ¥

buffer addr =0x9000

| evternal hardware? |

31

direct memory access (DMA)

processor

interrupt
controller

write to OxX9000

actual memory

(instead of internal buffer) memory bus T

control registers

device controller other devices

M/queues

status

read?

write?

buffer addr =0x9000

| evternal hardware? |

31

direct memory access (DMA)

processor

interrupt
controller

OS reads from Ox9000
rather than copying

from device buffer ~memory bus T

actual memory

control registers

device controller

other devices

Ewﬂ&@/queues

status

read?

write?

buffer addr =0x9000

| evternal hardware? |

31

direct memory access (DMA)

processor

interrupt
controller

best case: OS chooses

location user program
passed to read()/etc.

actual memory

(avoids copy!) memory bus T

device controller

other devices

status

control registers
g Ewﬂ&@/queues

read?
write?
buffer addr =0x9000

| evternal hardware? |

31

direct memory access (DMA)

much faster, e.g., for disk or network 1/0O

avoids having processor run a loop to copy data

OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)

OS specifies physical address to use...
instead of reading from device controller

32

IOMMUs

typically, direct memory access requires using physical addresses
devices don’t have page tables
need contiguous physical addresses (multiple pages if buffer >page size)
devices that messes up can overwrite arbitrary memory

recent systems have an |O Memory Management Unit
“pagetables for devices”
allows non-contiguous buffers
enforces protection — broken device can't write wrong memory location
helpful for virtual machines

33

devices summary

device controllers connected via memory bus

usually assigned physical memory addresses
sometimes separate “l/O addresses” (separate load/store instructions)

controller looks like “magic memory"” to OS

load/store from device controller registers like memory
setting/reading control registers can trigger device operations

two options for data transfer

programmed 1/O: OS reads from /writes to buffer within device controller
direct memory access (DMA): device controller reads/writes normal
memory

34

filesystems

35

hard drive interfaces

hard drives and solid state disks are divided into sectors

historically 512 bytes (larger on recent disks)

disk commands:

read from sector ¢ to sector j
write from sector ¢ to sector j this data

typically want to read /write more than sector— 4K+ at a time

36

filesystems

filesystems: store hierarchy of directories on disk

disk is a flat list of sectors of data

home

cs2150 cs4970 > mail
Iatl lab2 > projl
cot.h coll.cpp pr:j.h

(figure adapted from Bloomfield’s CS 2150 slides) 37

filesystem problems

given a file (identified how?), where is its data?
which sectors? parts of sectors?

given a directory (identified how?), what files are in it?

given a file/directory, where is its metadata?
owner, modification date, permissions, size, ...

making a new file: where to put it?

making a file/directory bigger: where does new data go?

38

the FAT filesystem

FAT: File Allocation Table

probably simplest widely used filesystem (family)

named for important data structure: file allocation table

39

FAT and sectors

FAT divides disk into clusters

composed of one or more sectors
sector = minimum amount hardware can read

cluster: typically 512 to 4096 bytes

a file's data is stored in clusters

reading a file: determine the list of clusters

40

FAT: the file allocation table

big array on disk, one entry per cluster

each entry contains a number — usually “next cluster”

cluster num. entry value

0 4
1 {
2 5
3 1434
1000 4503
1001 1523

FAT: reading a file (1)

get (from elsewhere) first cluster of data
linked list of cluster numbers

next pointers? file allocation table entry for cluster
special value for NULL (-1 in this example; maybe different in real FAT)

cluster entry value

num. -

10 14

i% 5252 file starting at cluster 10 contains data in:
13 ~1 (end mark) cluster 10, then 14, then 15, then 13

14 15

15 13

42

FAT: reading a file (2)

cluster number

the disk

i e e e
WNROWOWO~OUIAWNFOWOVO~OUTAWNFO

NNNNNNN -
oulh

NNN
O 00~

file allocation table

entry value

21

8

9

-1 (end mark)

14

23

54

-1 (end mark)

15

13

20

index

6
2
38
9
10
11
12
15
14
15
16

43

FAT: reading a file (2)

cluster number

the disk

block 0|
block 1
block 2|

[
QOONOUIRWNRO

11

file allocation table

entry value

21

8

9

-1 (end mark)

14

23

54

-1 (end mark)

15

13

20

index

6
2
38
9
10
11
12
15
14
15
16

43

FAT: reading a file (2)

cluster number

the disk
0
1
2
3
s \
6 '
A}
g TN
9 VA
10 [block OF—
11
12
=y
ock. 1§—
15 |block 2|
16
17
18
19
20
21
22
23
24
25
26
27
28
29

file allocation table

entry value

21

8

9

-1 (end mark)

14

23

54

-1 (end mark)

15

13

20

index

6
2
38
9
10
11
12
15
14
15
16

43

FAT: reading files

to read a file given it's start location
read the starting cluster X
get the next cluster Y from FAT entry X

read the next cluster

get the next cluster from FAT entry Y

until you see an end marker

44

start locations?

really want filenames

stored in directories!

in FAT: directory is a file, but its data is list of:

(name, starting location, other data about file)

45

finding files with directory

the disk

| file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html|” starting at cluster 17, 4312 bytes

directory “examples” starting at cluster 20

Lo

ROWOVO~NOUIRAWNHO

dirpt o unused entry
12 lair ot 1] file “info.html” starting at cluster 50, 23789 bytes

cluster number
[
(6)]

28
29 46

finding files with directory

the disk

| file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html|” starting at cluster 17, 4312 bytes

directory “examples” starting at cluster 20

Lo

ROOO~NOUIRAWNHO

dirpt o unused entry
12 lair ot 1] file “info.html” starting at cluster 50, 23789 bytes

cluster number
[
(6)]

28
29 46

finding files with directory

the disk

| file “index.htm!” starting at cluster 10, 12792 bytes
file “assignments.html|” starting at cluster 17, 4312 bytes

directory “examples” starting at cluster 20
unused entry

ROOO~NOUIRAWNHO

file “info.html” starting at cluster 50, 23789 bytes

index.html pt 2}¢ . .
16 |index.html pt 3}&". "~ .
17 w7 | (bytes 0-4095 of index.html)

cluster number
[
(6)]

26 “|(unused bytes 12792-16384)

29 46

finding files with directory

the disk

| file “index.htm!” starting at cluster 10, 12792 bytes
file “assignments.html|” starting at cluster 17, 4312 bytes

directory “examples” starting at cluster 20
unused entry

ROWOVO~NOUIRAWNHO

file “info.html” starting at cluster 50, 23789 bytes

index.html pt 2}¢ . .
16 |index.html pt 3}&". "~ .
17 w7 | (bytes 0-4095 of index.html)

cluster number
[
(6)]

26 “|(unused bytes 12792-16384)

29 46

FAT directory entry

box = 1 byte

entry for README . TXT, 342 byte file, starting at cluster 0x104F4
‘ 'Rl ‘ lEl ‘ lAl ‘ |Dl ‘ IMI ‘ IE' ‘l |_|"' |_|" ITI ‘ IXI ‘ lTl ‘OXOO

-1
. directory?
/' read-only?

filename + extension (README . TXT) attrs; 1 ien?
0x9COXA10x200x7DOX3COx7DBX3COXxO1OX000XECOX62/0x76 -
creation date + time last access cluster # last write
(2010-03-29 04:05:03.56) (2010-03-29) (hlgh bltS) (2010-03-22 12:23:12)
0x3COxF40x040x560x010x000x00 'F' '0' | 0" |
'a_stt cluster # file size next directory entry...
Z\:)rrlfet (IOW bitS) (0x156 bytes)

47

FAT directory entry

box = 1 byte

entry for README . TXT, 342 byte file, starting at cluster 0x104F4
‘ 'Rl ‘ lEl ‘ lAl ‘ |D' ‘ IMI ‘ lEl ‘l |_|"' |_|" ITI ‘ IXI ‘ lTl ‘OXOO

-1
. directory?
/' read-only?

filename + extension (README . TXT) attrs; 1 ien?
0x9COXA10x200x7DOX3COx7DBX3C/OXxO1OX00/0XECOX62/0x76 -
creation date + time last access | cluster # last write
(2010-03-29 04:05:03.56) (2010-03-29) {hIEh bltS) (2010-03-22 12:23:12)
0x3C|0xF40x04/0x560x010x000x00 'F' 0’| 0" |
'a_stt cluster # file size next directory entry...
Z\:)rrlfi (low bits) (0x156 bytes)

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

47

FAT directory entry

box = 1 byte

entry for README . TXT, 342 byte file, starting at cluster 0x104F4
'R! ‘ 'E! ‘ TA!Y ‘ 'D' ‘ M!' ‘ 'E! ‘l l_ll‘l l_ll‘ T ‘ rY! ‘ 'T! OXOO’ :’I directory?

: : . read-only?
filename + extension (README . TXT) attrs; hidden?y
0x9COXA10x200x7DOX3COx7DBX3COXxO1OX000XECOX62/0x76 -
creation date + time last access cluster # last write
(2010-03-29 04:05:03.56) (2010-03-29) (hlgh bltS) (2010-03-22 12:23:12)
0x3COxF40x040x560x010x000x00 'F' '0' | 0" |
last cluster # file size next directory entry...

write c
o (IOW bItS) (0x156 bytes)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

47

FAT directory entry

box = 1 byte

entry for README . TXT, 342 byte file, starting at cluster 0x104F4
'R! ‘ 'E! ‘ TA!Y ‘ 'D' ‘ M!' ‘ 'E! ‘l l_ll‘l l_ll‘ T ‘ rY! ‘ 'T! OXOO’ :’I directory?

: : /' read-only?
filename + extension (README . TXT) attrs; hidden?y
0x9COXA10x200x7DOX3COx7DBX3COXxO1OX000XECOX62/0x76 -
creation date + time last access cluster # last write
(2010-03-29 04:05:03.56) (2010-03-29) (hlgh bltS) (2010-03-22 12:23:12)
0x3COxF40x040x560x010x000x00 'F' '0' | 0" |
last cluster # file size next directory entry...

write o
o (lOW bItS) (0x156 bytes)

8 character filename + 3 character extension
history: used to be all that was supported

47

FAT directory entry

box = 1 byte

entry for README . TXT, 342 byte file, starting at cluster 0x104F4

‘ 'R! ‘ 'E! ‘ TA!Y ‘ 'D' ‘ M!' ‘ 'E! ‘l l_ll‘l l_ll‘ T ‘ rY! ‘ 'T!' IOXx00 :’I directory?
/' read-only?

filename + extension (README . TXT) attrsp - den?
0x9COXA10x200x7DOX3COx7DBX3COXxO1OX000XECOX62/0x76 -
creation date + time last access cluster # last write
(2010-03-29 04:05:03.56) (2010-03-29) (hlgh bItS) (2010-03-22 12:23:12)
0x3COxF40x040x560x010x000x00 'F' '0' | 0" |
last cluster # file size next directory entry...

write c
o (IOW bItS) (0x156 bytes)

attributes: is a subdirectory, read-only, ...
also marks directory entries used to hold extra filename data

47

FAT directory entry

box = 1 byte

entry for README . TXT, 342 byte file, starting at cluster 0x104F4
'R! IEI‘IAI‘IDI‘IMI‘IEI |-|-|‘uxl‘uTu‘@X@G)’,’Idirectory?

(-

[—)

. : ¢ read-only?
filename + extension (README . TXT) attrs; hidden?y
0x9COXA10x20/0x7DOX3COx7DOX3COXxO1OX00OXECOX62/0X76
creation date + time last access cluster # last write
(2010-03-29 04:05:03.56) (2010-03-29) (hlgh bltS) (2010-03-22 12:23:12)
0x3COxF40x040x560x010x000x00 'F' '0' | 0" |
last cluster # file size next directory entry...

write c
o (IOW bItS) (0x156 bytes)

convention: if first character is 0x0 or OxE5 — unused
0x00: for filling empty space at end of directory
OxEb: ‘hole’ — e.g. from file deletion

47

aside: FAT date encoding

seperate date and time fields (16 bits, little-endian integers)
bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour
bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

48

FAT directory entries (from C)

struct

s

uint8_t DIR_Name[1ll];
uint8_t DIR_Attr;
uint8_t DIR_NTRes;

uint8_t DIR_CrtTimeTenth;

uintleée_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uint32_t

DIR_CrtTime;
DIR_CrtDate;
DIR_LstAccDate;
DIR_FstClusHI;
DIR_WrtTime;
DIR_WrtDate;
DIR_FstClusLO;
DIR_FileSize;

//
//
//
//

__attribute__((packed)) DirEntry {

short name

File attribute

set value to 0, never change t
millisecond timestamp for file
time file was created

date file was created

last access date

high word of this entry's firs
time of last write

dat eof last write

low word of this entry's first
file size in bytes

49

FAT directory entries (from C)

struct

s

uint8_t DIR_Name[1ll];

uint8_t DI
uint8_t DI
uint8_t DI

uintleée_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uint32_t

//

__attribute__((packed)) DirEntry {

short name

GCC/Clang extension to disable padding
normally compilers add padding to structs file
0 (to avoid splitting values across cache blocks or pages)

ge t

IR_CrtDate;
DIR_LstAccDate;
DIR_FstClusHI;
DIR_WrtTime;
DIR_WrtDate;
DIR_FstClusLO;
DIR_FileSize;

//
//
//
//
//
//
//

date tile was created

last access date

high word of this entry's firs
time of last write

dat eof last write

low word of this entry's first
file size in bytes

49

FAT directory entries (from C)

struct

s

uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uint32_t

__attribute__
uint8_t DIR_Name[1]
uint8_t DIR_Attr;

uint8_t DIR_NTRes;
uint8_t DIR_CrtTime

8/16/32-bit unsigned integer
use exact size that's on disk
just copy byte-by-byte from disk to memory |ge ¢
(and everything happens to be little-endian) |file

DIR_CrtTine,
DIR_CrtDate;
DIR_LstAccDate;
DIR_FstClusHI;
DIR_WrtTime;
DIR_WrtDate;
DIR_FstClusLO;
DIR_FileSize;

77

//
//
//
//
//
//
//

ctime 1TUtE Wwus Ccrecuacccu

date file was created

last access date

high word of this entry's firs
time of last write

dat eof last write

low word of this entry's first
file size in bytes

49

FAT directory entries (from C)

struct

I

__attribut
uint8_t DIR_Nam
uint8_t DIR_Att

why are the names so bad (“FstClusHI", etc.)?
comes from Microsoft's documentation this way

uint8_t DIR_NTRes;

uint8_t DIR_CrtTimeTenth;

uintleée_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uintle_t
uint32_t

DIR_CrtTime;
DIR_CrtDate;
DIR_LstAccDate;
DIR_FstClusHI;
DIR_WrtTime;
DIR_WrtDate;
DIR_FstClusLO;
DIR_FileSize;

//
//

set value to 0, never change t
millisecond timestamp for file
time file was created

date file was created

last access date

high word of this entry's firs
time of last write

dat eof last write

low word of this entry's first
file size in bytes

49

nested directories

foo/bar/baz/file.txt

read root directory entries to find foo
read foo's directory entries to find bar
read bar's directory entries to find baz

read baz's directory entries to find file.txt

50

the root directory?

but where is the first directory?

51

FAT disk header

cluster number

the dis

FAT

root directory
starts here

R e

NNINININI =ttt
URWNHOWOVONOUTRWNHOWOONOUTRAWNRG

NDNNNN
(oJooEN[e)}

filesystem header

(OS startup data) |-

bytes per sector

reserved sectors
sectors per cluster

total sectors
FAT size

Number of FATs
root directory cluster

512

52

FAT disk header

cluster number

the dis

FAT

root directory
starts here

R e

NNINININI =ttt
URWNHOWOVONOUTRWNHOWOONOUTRAWNRG

NDNNNN
(oJooEN[e)}

filesystem header

(OS startup data) |-

bytes per sector

reserved sectors
sectors per cluster

total sectors
FAT size

Number of FATs
root directory cluster

512

52

FAT disk header

the disk filesystem header

>reserved sectors (OS startup data) |-

FAT bytes per sector 512
reserved sectors |5

sectors per cluster (4

root directory total sectors |4096

R e

starts here ™. FAT size |11
Number of FATs |2

root directory cluster [10

cluster number
NNNNN R HE R
UGDRWNRFROOVONOUTIRAWNROOONOUTRWNERO

NNN

NN
(oJooEN[e)}

FAT disk header

cluster number

the dis

e

root directory
starts here

R e

NNINININI =ttt
URWNHOWOVONOUTRWNHOWOONOUTRAWNRG

NDNNNN
(oJooEN[e)}

filesystem header

(OS startup data) |-

bytes per sector

reserved sectors
sectors per cluster

total sectors
FAT size

Number of FATs
root directory cluster

512

5

4

4096

11

2

10

52

FAT disk header

cluster number

the dis

FAT

root directory
starts here

R e

NNINININI =ttt
URWNHOWOVONOUTRWNHOWOONOUTRAWNRG

NDNNNN
(oJooEN[e)}

filesystem header

(OS startup data) |-

bytes per sector

reserved sectors
sectors per cluster

total sectors
FAT size

Number of FATs
root directory cluster

512

52

FAT disk header

the dis filesystem header

0 (05 startup data) |-

2 FAT bytes per sector 512

4 reserved sectors b

g baCk“p.&FAT sectors per cluster [4

8 . TR
. root directory total sectors |4096
3 11 starts here ™. FAT size 11
£ 13 - Number of FATs |2
2 1t root directory cluster [10
18
S 18
0 19
= 20
o 21

22

23

24

25

26

27

28

filesystem header

fixed location near beginning of disk
determines size of clusters, etc.

tells where to find FAT, root directory, etc.

53

FAT header (C)

struct __attribute__((packed))

uint8_t BS_jmpBoot[3];
uint8_t BS_oemName[8];
uintlé_t BPB_BytsPerSec;
uint8_t BPB_SecPerClus;
uintl6_t BPB_RsvdSecCnt;
uint8_t BPB_NumFATs;
uintlée_t BPB_rootEntCnt;
uintl6_t BPB_totSecl6;
uint8_t BPB_media;

uintle_t BPB_ExtFlags;

//
//
//
//
//
//
//
//

//

Fat32BPB {
// jmp instr to boot code
indicates what system formatted this

count
no.of
no.of
count
count
total
value

flags

of bytes per sector

sectors per allocation unit
reserved sectors in the reserve
of FAT datastructures on the v
of 32-byte entries in root dir.
sectors on the volume

of fixed media

indicating which FATs are acti\

54

FAT header (C)

struct __attribute__((packed)) Fat32BPB {

uint8_t BS JmpBoot[B],

// jmp instr to boot code

i i C e 1

uint8_t BS| e

uint16_t BF size of sector (in bytes) and size of cluster (in sectors)

this

uint8_t BPBb—_secrercrtus;

uintl6é_t BPB_RsvdSecCnt;

uint8_t BPB_NumFATs;

uintlée_t BPB_rootEntCnt;

uintl6_t BPB_totSecl6;
uint8_t BPB_media;

uintle_t BPB_ExtFlags;

77
//
//
//
//
//

//

rmo. o7
no.of
count
count
total
value

flags

SECLOrs pe€r agttocactorr urrtt
reserved sectors in the reserve
of FAT datastructures on the v
of 32-byte entries in root dir.
sectors on the volume

of fixed media

indicating which FATs are acti\

54

FAT header (C)

struct __attribute__((packed)) Fat32BPB {

uint8_t BS_jmpBoot[3];
uint8_t BS_oemName[8];
uintlé_t BPB_BytsPerSec;
uint8_t BPB_SecPerClus;
uintl6_t BPB_RsvdSecCnt;
uint8_t BPB_NumFATs;
uintlée_t BPB_rootEntCnt;
uintl6_t BPB_totSecl6;
uint8_t BPB_media;

uintle_t BPB_ExtFlags;

//]mp 1nstr to boot code

i C Ve]

number of copies of file aIIocatlon table
extra copies in case disk is damaged
typically two with writes made to both

this

it
Serve

he v

// count of 32-byte entries in root

// total sectors on the volume
// value of fixed media

// flags indicating which FATs are

dir,

acti

54

FAT header (C)

struct __attribute__((packed))

uint8_t BS_jmpBoot[3];
uint8_t BS_oemName[8];
uintlé_t BPB_BytsPerSec;
uint8_t BPB_SecPerClus;
uintl6e_t BPB_RsvdSecCnt;
uint8_t BPB_NumFATs;
uintle_t BPB_rootEntCnt;
uintl6_t BPB_totSecl6;
uint8_t BPB_media;

uintle_t BPB_ExtFlags;

//
//
//
//
//
//
//
//

//

Fat32BPB {
// jmp instr to boot code
indicates what system formatted this

count
no.of
no.of
count
count
total
value

flags

of bytes per sector

sectors per allocation unit
reserved sectors in the reserve
of FAT datastructures on the v
of 32-byte entries in root dir.
sectors on the volume

of fixed media

indicating which FATs are acti\

54

backup slides

55

ways to talk to 1/0 devices

user program

read /write/mmap/etc. file interface

regular files

: device files
filesystems

device drivers

56

devices as files

talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

57

example device files from a Linux desktop

/dev/snd/pcmCODOp — audio playback

configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive

usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/eventl® — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics

DRI = direct rendering infrastructure

58

devices: extra operations?

read /write/mmap not enough?

audio output device — set format of audio?

terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?

extra POSIX file descriptor operations:
ioctl (general 1/O control)
tcget/setaddr (for terminal settings)
fentl

59

	Linux device driver interface
	device driver flow chart
	example top/bottom half

	device interfaces generally
	direct-memory access
	IOMMUs

	devices summary
	[begin filesystem setion]
	disk sectors
	filesystem problems
	the FAT filesystem
	intro and file allocation table
	reading a file
	directories are files
	header for the disk

	backup slides
	devices as files

