
sockets con’t / RPC

1

last time

client/server versus peer-to-peer model

names, addresses (IPv4/IPv6), routing

socket abstraction — two-way pipes to remote machine

server sockets
bind() (set address) + listen() (wait for connections)
accept() to create new connection socket

client sockets
connect() to connect

getaddrinfo() — names to address
2

incomplete writes

write might write less than requested
error after writing some data
if blocking disabled with fcntl(), buffer full

read might read less than requested
error after reading some data
not enough data got there in time

3

handling incomplete writes

bool write_fully(int fd, const char *buffer, ssize_t count) {
const char *ptr = buffer;
const char *end = buffer + count;
while (ptr != end) {

ssize_t written = write(fd, (void*) ptr, end − ptr);
if (written == −1) {

return false;
}
ptr += written;

}
return true;

}

4

on filling buffers

char buffer[SIZE];
ssize_t buffer_used = 0;

int fill_buffer(int fd) {
ssize_t amount = read(

fd, buffer + buffer_used, SIZE − buffer_used
);
if (amount == 0) {

/* handle EOF */ ???
} else if (amount == −1) {

return −1;
} else {

buffer_used += amount;
}

}

5

reading lines
(note: code below is not tested)

int read_line(int fd, const char *p_line, size_t *p_size) {
const char *newline;
while (1) {

newline = memchr(buffer, '\n', buffer_used);
if (newline != NULL || buffer_used == SIZE) break;
fill_buffer();

}
memcpy(p_line, buffer, newline − buffer);
*p_size = newline − buffer;
memmove(newline, buffer, buffer + SIZE − newline);
buffer_end −= (newline − buffer);

}

6

aside: getting addresses

on a socket fd: getsockname = local addresss
sockaddr_in or sockaddr_in6
IPv4/6 address + port

on a socket fd: getpeername = remote address

7

addresses to string

can access numbers/arrays in sockaddr_in/in6 directly

another option: getnameinfo
supports getting W.X.Y.Z form or looking up a hostname

8

example echo client/server

handle reporting errors from incomplete writes

handle avoiding SIGPIPE
OS kills program trying to write to closed socket/pipe

set the SO_REUSEADDR “socket option”
default: OS reserves port number for a while after server exits
this allows keeps it unreserved
allows us to bind() immediately after closing server

client handles reading until a newline
but doesn’t check for reading multiple lines at once

9

example echo client/server

handle reporting errors from incomplete writes

handle avoiding SIGPIPE
OS kills program trying to write to closed socket/pipe

set the SO_REUSEADDR “socket option”
default: OS reserves port number for a while after server exits
this allows keeps it unreserved
allows us to bind() immediately after closing server

client handles reading until a newline
but doesn’t check for reading multiple lines at once

9

reading and writing at once

so far assumption: alternate between reading+writing
sufficient for FTP assignment
how many protocols work

“half-duplex”

don’t have to use sockets this way, but tricky

threads: one reading thread, one writing thread OR
event-loop: use non-blocking I/O and select()/poll()/etc. functions

non-blocking I/O setup with fcntl() function
non-blocking write() fills up buffer as much as possible, then returns
non-blocking read() returns what’s in buffer, never waits for more

10

remote procedure calls

goal: I write a bunch of functions

can call them from another machine

some tool + library handles all the details

called remote procedure calls (RPCs)

11

transparency

common hope of distributed systems is transparency

transparent = can “see through” system being distributed

for RPC: no difference between remote/local calls

(a nice goal, but…we’ll see)

12

stubs

typical RPC implementation: generates stubs

stubs = wrapper functions that stand in for other machine

calling remote procedure? call the stub
same prototype are remote procedure

implementing remote procedure? a stub function calls you

13

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

14

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

14

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

14

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

14

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

14

RPC use pseudocode (C-like)

client:
RPCContext context = RPC_GetContext("server␣name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

15

RPC use pseudocode (C-like)

client:
RPCContext context = RPC_GetContext("server␣name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

15

RPC use pseudocode (C-like)

client:
RPCContext context = RPC_GetContext("server␣name");
...
// dirprotocol_mkdir is the client stub
result = dirprotocol_mkdir(context, "/directory/name");

server:
main() {
dirprotocol_RunServer();

}

// called by server stub
int real_dirprotocol_mkdir(RPCLibraryContext context, char *name) {
...

}

context to specify and pass info about
where the function is actually located

transparency failure:
doesn’t look like a normal function call anymore
can we do better than this?

15

RPC use pseudocode (OO-like)

client:
DirProtocol* remote = DirProtocol::connect("server␣name");

// mkdir() is the client stub
result = remote−>mkdir("/directory/name");

server:
main() {

DirProtocol::RunServer(new RealDirProtocol, PORT_NUMBER);
}

class RealDirProtocol : public DirProtocol { public:
int mkdir(char *name) {
...

}
};

16

marshalling

RPC system needs to send arguments over the network
and also return values

called marshalling or serialization

can’t just copy the bytes from arguments
pointers (e.g. char*)
different architectures (32 versus 64-bit; endianness)

17

interface description langauge

tool/library needs to know:
what remote procedures exist
what types they take

typically specified by RPC server author in interface description
language

abbreviation: IDL

compiled into stubs and marshalling/unmarshalling code

18

why IDL? (1)

why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

19

why IDL? (1)

why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

19

why IDL? (2)

why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

20

why IDL? (2)

why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

20

IDL pseudocode + marshalling example

protocol dirprotocol {
1: int32 mkdir(string);
2: int32 rmdir(string);

}
mkdir("/directory/name") returning 0
client sends: \x01/directory/name\x00
server sends: \x00\x00\x00\x00

21

GRPC examples

will show examples for gRPC
RPC system originally developed at Google

defines interface description language, message format

uses a protocol on top of HTTP/2

note: gRPC makes some choices other RPC systems don’t

22

GRPC IDL example

message MakeDirArgs { required string path = 1; }
message ListDirArgs { required string path = 1; }

message DirectoryEntry {
required string name = 1;
optional bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++ classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of C++ classrule: arguments/return value always a message

23

GRPC IDL example

message MakeDirArgs { required string path = 1; }
message ListDirArgs { required string path = 1; }

message DirectoryEntry {
required string name = 1;
optional bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++ classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of C++ classrule: arguments/return value always a message

23

GRPC IDL example

message MakeDirArgs { required string path = 1; }
message ListDirArgs { required string path = 1; }

message DirectoryEntry {
required string name = 1;
optional bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++ classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of C++ classrule: arguments/return value always a message

23

GRPC IDL example

message MakeDirArgs { required string path = 1; }
message ListDirArgs { required string path = 1; }

message DirectoryEntry {
required string name = 1;
optional bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++ classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of C++ class

rule: arguments/return value always a message

23

GRPC IDL example

message MakeDirArgs { required string path = 1; }
message ListDirArgs { required string path = 1; }

message DirectoryEntry {
required string name = 1;
optional bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++ classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of C++ class

rule: arguments/return value always a message

23

RPC server implementation (method 1)

class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>name() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

24

RPC server implementation (method 1)

class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>name() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

24

RPC server implementation (method 1)

class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>name() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

24

RPC server implementation (method 1)

class DirectoriesImpl : public Directories::Service {
public:

Status MakeDirectory(ServerContext *context,
const MakeDirArgs* args,
Empty *result) {

std::cout << "MakeDirectory(" << args−>name() << ")\n";
if (−1 == mkdir(args−>path().c_str()) {

return Status(StatusCode::UNKNOWN, strerror(errno));
}
return Status::OK;

}
...

};

24

RPC server implementation (method 2)

class DirectoriesImpl : public Directories::Service {
public:

Status ListDirectory(ServerContext *context,
const ListDirArgs* args,
DirectoryList *result) {

...
for (...) {

result−>add_entry(...);
}
return Status::OK;

}
...

};

25

RPC server implementation (method 2)

class DirectoriesImpl : public Directories::Service {
public:

Status ListDirectory(ServerContext *context,
const ListDirArgs* args,
DirectoryList *result) {

...
for (...) {

result−>add_entry(...);
}
return Status::OK;

}
...

};

25

RPC server implementation (method 2)

class DirectoriesImpl : public Directories::Service {
public:

Status ListDirectory(ServerContext *context,
const ListDirArgs* args,
DirectoryList *result) {

...
for (...) {

result−>add_entry(...);
}
return Status::OK;

}
...

};

25

RPC server implementation (starting)

DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

26

RPC server implementation (starting)

DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

26

RPC server implementation (starting)

DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

26

RPC server implementation (starting)

DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

26

RPC server implementation (starting)

DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

26

RPC server implementation (starting)

DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

26

RPC server implementation (starting)

DirectoriesImpl service;
ServerBuilder builder;
builder.AddListeningPort("127.0.0.1:43534",

grpc::InsecureServerCredentials());
builder.RegisterService(&service);
unique_ptr<Server> server = builder.BuildAndStart();
server−>Wait();

26

RPC client implementation (method 1)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

27

RPC client implementation (method 1)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

27

RPC client implementation (method 1)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

27

RPC client implementation (method 1)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

27

RPC client implementation (method 1)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; MakeDirectoryArgs args; Empty empty;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &empty);
if (!status.ok()) { /* handle error */ }

27

RPC client implementation (method 2)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; ListDirectoryArgs args; DirectoryList list;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &list);
if (!status.ok()) { /* handle error */ }
for (int i = 0; i < list.entries_size(); ++i) {

cout << list.entries(i).name() << endl;
}

28

RPC client implementation (method 2)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; ListDirectoryArgs args; DirectoryList list;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &list);
if (!status.ok()) { /* handle error */ }
for (int i = 0; i < list.entries_size(); ++i) {

cout << list.entries(i).name() << endl;
}

28

RPC client implementation (method 2)

unique_ptr<Channel> channel(
grpc::CreateChannel("127.0.0.1:43534"),
grpc::InsecureChannelCredentials()));

unique_ptr<Directories::Stub> stub(Directories::NewStub(channel));
ClientContext context; ListDirectoryArgs args; DirectoryList list;
args.set_name("/directory/name");
Status status = stub−>MakeDirectory(&context, args, &list);
if (!status.ok()) { /* handle error */ }
for (int i = 0; i < list.entries_size(); ++i) {

cout << list.entries(i).name() << endl;
}

28

RPC non-transparency

setup is not transparent — what server/port/etc.
ideal: system just knows where to contact?

errors might happen
what if connection fails?

server and client versions out-of-sync
can’t upgrade at the same time — different machines

performance is very different from local

29

some gRPC errors

method not implemented
e.g. server/client versions disagree
local procedure calls — linker error

deadline exceeded
no response from server after a while — is it just slow?

connection broken due to network problem

30

leaking resources?

RemoteFile rfh;
stub.RemoteOpen(&context, filename, &rfh);

RemoteWriteRequest remote_write;
remote_write.set_file(rfh);
remote_write.set_data("Some␣text.\n");
stub.RemotePrint(&context, remote_write, ...);
stub.RemoteClose(rfh);

what happens if client crashes?

does server still have a file open?
related to issue of statefullness

31

on versioning

normal software: multiple versions of library?
extra argument for function
change what function does
…

just link against “correct version”

RPC: server gets upgraded out-of-sync with client

want to upgrade functions without breaking old clients

32

gRPC’s versioning

gRPC: messages have field numbers

rules allow adding new optional fields
get message with extra field — ignore it
(extra field includes field numbers not in our source code)
get message missing optional field — ignore it

otherwise, need to make new methods for each change
…and keep the old ones working for a while

33

versioned protocols

ONC RPC solution: whole service has versions

have implementations of multiple versions in server

verison number is part of every procedures name

34

RPC performance

local procedure call: ∼ 1 ns

system call: ∼ 100 ns

network part of remote procedure call
(typical network) > 400 000 ns
(super-fast network) 2 600 ns

35

RPC locally

not uncommon to use RPC on one machine

more convenient alternative to pipes?

allows shared memory implementation
mmap one common file
use mutexes+condition variables+etc. inside that memory

36

network filesystems

department machines — your files always there
even though several machines to log into

how? there’s a network file server

filesystem is backed by a remote machine

37

simple network filesystem

user program

kernel

system calls:
open("foo.txt", …)
read(fd,"bar.txt",…)
…

login server

file server
(other machine)remote procedure calls:

open("foo.txt", …)
read(fd, "bar.txt", …)
…

38

system calls to RPC calls?

just turn system calls into RPC calls?
(or calls to the kernel’s internal fileystem abstraction, e.g. Linux’s Virtual
File System layer)

has some problems:

what state does the server need to store?

what if a client machine crashes?

what if the server crashes?

how fast is this?
39

state for server to store?

open file descriptors?
what file
offset in file

current working directory?

gets pretty expensive across N clients, each with many processes

40

if a client crashes?

well, it hasn’t responded in N minutes, so

can the server delete its open file information yet?

what if its cable is plugged back in and it works again?

41

if the server crashes?

well, first we restart the server/start a new one…

then, what do clients do?

probably need to restart to?

can we do better?

42

performance

before: reading/writing files/directories goes to local memory
lots of work to have use memory to cache, read-ahead

so open/read/write/close/rename/readdir/etc. take microseconds
open that file? yes, I have the direntry cached
read from that file? already in my memory

now: they probably take milliseconds+
open that file? let’s ask the server if that’s okay
read from that file? let’s copy it from the server

can we do better?

43

NFSv2

NFS (Network File System) version 2

standardized in RFC 1094 (1989)

based on RPC calls

44

NFSv2 RPC calls (subset)

LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

45

NFSv2 RPC calls (subset)

LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failurefile ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

46

NFSv2 client versus server

clients: file descriptor →server name, file ID, offset

client machine crashes? mapping automatically deleted
“fate sharing”

server: convert file IDs to files on disk
typically find unique number for each file
usually by inode number

server doesn’t get notified unless client is using the file

47

file IDs

device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

48

file IDs

device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

48

file IDs

device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

48

NFSv2 RPC calls (subset)

LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

49

NFSv2 RPC (more operations)

READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

50

NFSv2 RPC (more operations)

READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

50

things NFSv2 didn’t do well

performance — each read goes to server?
would like to cache things in the clients

performance — each write goes to server?
observation: usually only one user of file at a time
would like to usually cache writes at clients
writeback later

offline operation?
would be nice to work on laptops where wifi sometimes goes out

51

statefulness

stateful protocol (example: FTP)
previous things in connection matter
e.g. logged in user
e.g. current working directory
e.g. where to send data connection

stateless protocol (example: HTTP, NFSv2)
each request stands alone
servers remember nothing about clients between messages
e.g. file IDs for each operation instead of file descriptor

52

stateful versus stateless

in client/server protocols:

stateless: more work for client, less for server
client needs to remember/forward any information
can run multiple copies of server without syncing them
can reboot server without restoring any client state

stateful: more work for server, less for client
client sets things at server, doesn’t change anymore
hard to scale server to many clients (store info for each client
rebooting server likely to break active connections

53

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

54

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

54

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

54

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

54

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

54

consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

55

consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

55

consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

55

consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

55

typical text editor/word processor

typical word processor:

opening a file:
open file, read it, load into memory, close it

saving a file:
open file, write it from memory, close it

56

two people saving a file?

have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

57

two people saving a file?

have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

57

open to close consistency

a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

58

open to close consistency

a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

58

an alternate compromise

application opens a file, read it a day later, result?
day-old version of file

modification 1: check server/write to server after an amount of time

doesn’t need to be much time to be useful
word processor: typically load/save file in < second

59

AFSv2

Andrew File System version 2

uses a stateful server

also works file at a time — not parts of file
i.e. read/write entire files

but still chooses consistency compromise
still won’t support simulatenous read+write from diff. machines well

stateful: avoids repeated ‘is my file okay?’ queries

60

NFS versus AFS reading/writing

NFS reading: read/write block at a time

AFS reading: always read/write entire file

exercise: pros/cons?
efficient use of network?
what kinds of inconsistency happen?
does it depend on workload?

61

AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: write whole file

last writer wins

62

NFS: last writer wins per block
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
NFS: write NOTES.txt block 0

close NOTES.txt
NFS: write NOTES.txt block 0
NFS: write NOTES.txt block 1

NFS: write NOTES.txt block 1
NFS: write NOTES.txt block 2

NFS: write NOTES.txt block 2
NOTES.txt: 0 from B, 1 from A, 2 from B 63

AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

64

AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

64

AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

64

AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

64

callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

65

callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

65

callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

65

on connections and how they fail

for the most part: don’t look at details of connection
implementation

…but will do so to explain how things fail

why? important for designing protocols that change things
how do I know if any action took place?

66

dealing with network failures

machine A machine B
append to file A

machine A machine B

append to file A

does A need to retry appending? can’t tell

67

handling failures: try 1

machine A machine B

append to file A

yup, done!

machine A machine B

append to file A

yup, done!

does A need to retry appending? still can’t tell

68

handling failures: try 1

machine A machine B

append to file A

yup, done!

machine A machine B

append to file A

yup, done!

does A need to retry appending? still can’t tell

68

handling failures: try 1

machine A machine B

append to file A

yup, done!

machine A machine B

append to file A

yup, done!

does A need to retry appending? still can’t tell

68

handling failures: try 2

machine A machine B

append to file A

yup, done!append to file A (if you haven’t)

yup, done!

retry (in an idempotent way) until we get an acknowledgement
basically the best we can do, but when to give up?

69

dealing with failures

real connections: acknowledgements + retrying

but have to give up eventually

means on failure — can’t always know what happened remotely!
maybe remote end received data
maybe it didn’t
maybe it crashed
maybe it’s running, but it’s network connection is down
maybe our network connection is down

also, connection knows whether program received data
not whether program did whatever commands it contained

70

supporting offline operation

so far: assuming constant contact with server

someone else writes file: we find out

we finish editing file: can tell server right away

good for an office
my work desktop can almost always talk to server

not so great for mobile cases
spotty airport/café wifi, no cell reception, …

71

AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: (over)write whole file

probably losing data!
usually wanted to merge two versions

72

Coda FS: conflict resolution

Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates

and then…ask user? regenerate file? …?

73

Coda FS: conflict resolution

Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates

and then…ask user? regenerate file? …?

73

Coda FS: what to cache

idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

74

Coda FS: what to cache

idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

74

version ID?

not a version number?

actually a version vector

version number for each machine that modified file
number for each server, client

allows use of multiple servers
if servers get desync’d, use version vector to detect
then do, uh, something to fix any conflicting writes

75

file locking

so, your program doesn’t like conflicting writes

what can you do?

if offline operation, probably not much…

otherwise file locking

except it often doesn’t work on NFS, etc.

76

advisory file locking with fcntl

int fd = open(...);
struct flock lock_info = {

.l_type = F_WRLCK, // write lock; RDLOCK also available
// range of bytes to lock:
.l_whence = SEEK_SET, l_start = 0, l_len = ...

};
/* set lock, waiting if needed */
int rv = fcntl(fd, F_SETLKW, &lock_info);
if (rv == −1) { /* handle error */ }
/* now have a lock on the file */

/* unlock --- could also close() */
lock_info.l_type = F_UNLCK;
fcntl(fd, F_SETLK, &lock_info);

77

advisory locks

fcntl is an advisory lock

doesn’t stop others from accessing the file…

unless they always try to get a lock first

78

POSIX file locks are horrible

actually two locking APIs: fcntl() and flock()

fcntl: not inherited by fork

fcntl: closing any fd for file release lock
even if you dup2’d it!

fcntl: maybe sometimes works over NFS?

flock: less likely to work over NFS, etc.

79

fcntl and NFS

seems to require extra state at the server

typical implementation: separate lock server

not a stateless protocol

80

lockfiles

use a separate lockfile instead of “real” locks
e.g. convention: use NOTES.txt.lock as lock file

lock: create a lockfile with link() or open() with O_EXCL
can’t lock: link()/open() will fail “file already exists”
for current NFSv3: should be single RPC calls that always contact server
some (old, I hope?) systems: link() atomic, open() O_EXCL not

unlock: remove the lockfile
annoyance: what if program crashes, file not removed?

81

	sockets, continued
	incomplete reads/writes
	getting addresses from sockets
	socket examples on webiste
	simultaneous read/write

	remote procedure calls
	RPC concept and stubs
	RPC data flow
	pseudocode using an RPC library
	marshalling
	GRPC examples
	non-transparency: errors and versioning and performance
	RPC locally

	network filesystems
	idea: shared, remote FS
	stateless NFS
	stateless NFS problems
	on statefulness
	problems with caching
	close-to-open consistency or timing
	AFS: callbacks
	interlude on network failures
	Coda: disconnected operation
	file locking

