
Distributed 3: Network FS (finish) / Failure

1



Changelog

Changes made in this version not seen in first lecture:
16 April 2019: move and relocate Coda/disconnected operation slides to
better explain connection to last-writer-wins being a problem

1



last time

transparency
remote procedure calls

interface description languages
generic among architectures/languages?

network filesystems via RPCs
stateless servers

server remembers nothing about client
server doesn’t care if client crashes
trick: client stores opaque IDs/cookies/etc. for server

NFSv2: stateless servers for filesystem
file IDs (based on inode number) tracked by clients

2



things NFSv2 didn’t do well

performance — each read goes to server?
would like to cache things in the clients

performance — each write goes to server?
observation: usually only one user of file at a time
would like to usually cache writes at clients
writeback later

offline operation?
would be nice to work on laptops where wifi sometimes goes out

3



statefulness

stateful protocol (example: FTP)
previous things in connection matter
e.g. logged in user
e.g. current working directory
e.g. where to send data connection

stateless protocol (example: HTTP, NFSv2)
each request stands alone
servers remember nothing about clients between messages
e.g. file IDs for each operation instead of file descriptor

4



stateful versus stateless

in client/server protocols:

stateless: more work for client, less for server
client needs to remember/forward any information
can run multiple copies of server without syncing them
can reboot server without restoring any client state

stateful: more work for server, less for client
client sets things at server, doesn’t change anymore
hard to scale server to many clients (store info for each client
rebooting server likely to break active connections

5



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

6



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

6



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

6



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

6



updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

6



consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

7



consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

7



consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

7



consistency with stateless server

always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow inconsistency

7



typical text editor/word processor

typical word processor:

opening a file:
open file, read it, load into memory, close it

saving a file:
open file, write it from memory, close it

8



two people saving a file?

have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

9



two people saving a file?

have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

9



open to close consistency

a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

10



open to close consistency

a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

10



an alternate compromise

application opens a file, read it a day later, result?
day-old version of file

modification 1: check server/write to server after an amount of time

doesn’t need to be much time to be useful
word processor: typically load/save file in < second

11



AFSv2

Andrew File System version 2

uses a stateful server

also works file at a time — not parts of file
i.e. read/write entire files

but still chooses consistency compromise
still won’t support simulatenous read+write from diff. machines well

stateful: avoids repeated ‘is my file okay?’ queries

12



NFS versus AFS reading/writing

NFS reading: read/write block at a time

AFS reading: always read/write entire file

exercise: pros/cons?
efficient use of network?
what kinds of inconsistency happen?
does it depend on workload?

13



AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: write whole file

last writer wins

14



NFS: last writer wins per block
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
NFS: write NOTES.txt block 0

close NOTES.txt
NFS: write NOTES.txt block 0
NFS: write NOTES.txt block 1

NFS: write NOTES.txt block 1
NFS: write NOTES.txt block 2

NFS: write NOTES.txt block 2
NOTES.txt: 0 from B, 1 from A, 2 from B 15



AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

16



AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

16



AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

16



AFS caching

client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

16



callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

17



callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

17



callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

17



supporting offline operation

so far: assuming constant contact with server

someone else writes file: we find out

we finish editing file: can tell server right away

good for an office
my work desktop can almost always talk to server

not so great for mobile cases
spotty airport/café wifi, no cell reception, …

18



basic offline operation idea

when offline: work on cached data only

writeback whole file only

problem: more opportunity for overlapping accesses to same file

19



recall: AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: (over)write whole file

probably losing data!
usually wanted to merge two versions

worse problem with delayed writes for disconnected operation

20



recall: AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: (over)write whole file

probably losing data!
usually wanted to merge two versions

worse problem with delayed writes for disconnected operation
20



Coda FS: conflict resolution

Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates
avoid problem of last writer wins

and then…ask user? regenerate file? …?

21



Coda FS: conflict resolution

Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates
avoid problem of last writer wins

and then…ask user? regenerate file? …?

21



Coda FS: what to cache

idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

22



Coda FS: what to cache

idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

22



version ID?

not a version number?

actually a version vector

version number for each machine that modified file
number for each server, client

allows use of multiple servers
if servers get desync’d, use version vector to detect
then do, uh, something to fix any conflicting writes

23



on connections and how they fail

for the most part: don’t look at details of connection
implementation

…but will do so to explain how things fail

why? important for designing protocols that change things
how do I know if any action took place?

24



dealing with network failures

machine A machine B
append to file A

machine A machine B

append to file A

does A need to retry appending? can’t tell

25



handling failures: try 1

machine A machine B

append to file A

yup, done!

machine A machine B

append to file A

yup, done!

does A need to retry appending? still can’t tell

26



handling failures: try 1

machine A machine B

append to file A

yup, done!

machine A machine B

append to file A

yup, done!

does A need to retry appending? still can’t tell

26



handling failures: try 1

machine A machine B

append to file A

yup, done!

machine A machine B

append to file A

yup, done!

does A need to retry appending? still can’t tell

26



handling failures: try 2

machine A machine B

append to file A

yup, done!append to file A (if you haven’t)

yup, done!

retry (in an idempotent way) until we get an acknowledgement
basically the best we can do, but when to give up?

27



dealing with failures

real connections: acknowledgements + retrying

but have to give up eventually

means on failure — can’t always know what happened remotely!
maybe remote end received data
maybe it didn’t
maybe it crashed
maybe it’s running, but it’s network connection is down
maybe our network connection is down

also, connection knows whether program received data
not whether program did whatever commands it contained

28



failure models

how do machines fail?…

well, lots of ways

29



two models of machine failure

fail-stop

failing machines stop responding
or one always detects they’re broken and can ignore them

Byzantine failures

failing machines do the worst possible thing

30



dealing with machine failure

recover when machine comes back up
does not work for Byzantine failures

rely on a quorum of machines working
requires 1 extra machine for fail-stop
requires 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

31



dealing with machine failure

recover when machine comes back up
does not work for Byzantine failures

rely on a quorum of machines working
requires 1 extra machine for fail-stop
requires 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

31



distributed transaction problem

distributed transaction

two machines both agree to do something or not do something

even if a machine fails

primary goal: consistent state

32



distributed transaction example

course database across many machines

machine A and B: student records

machine C: course records

want to make sure machines agree to add students to course

…even if one machine fails

no confusion about student is in course
“consistency”

33



the centralized solution

one solution: a new machine D decides what to do
for machines A-C which store records

machine D maintains a redo log for all machines

treats them as just data storage

problem: we’d like machines to work indepdently
not really taking advantage of distributed system
why did we split student records across two machines anyways?

34



the centralized solution

one solution: a new machine D decides what to do
for machines A-C which store records

machine D maintains a redo log for all machines

treats them as just data storage

problem: we’d like machines to work indepdently
not really taking advantage of distributed system
why did we split student records across two machines anyways?

34



decentralized solution sketch

want each machine to be responsible just for their own data

only coordinate when transaction crosses machine
e.g. changing course + student records

only coordinate with involved machines

hopefully, scales to tens or hundreds of machines
typical transaction would involve 1 to 3 machines?

35



decentralized solution sketch

want each machine to be responsible just for their own data

only coordinate when transaction crosses machine
e.g. changing course + student records

only coordinate with involved machines

hopefully, scales to tens or hundreds of machines
typical transaction would involve 1 to 3 machines?

35



decentralized solution sketch

want each machine to be responsible just for their own data

only coordinate when transaction crosses machine
e.g. changing course + student records

only coordinate with involved machines

hopefully, scales to tens or hundreds of machines
typical transaction would involve 1 to 3 machines?

35



distributed transactions and failures

extra tool: persistent log

idea: machine remembers what happen on failure

same idea as redo log: record what to do in log
preview: whether trying to do/not do action

…but need to handle if machine stopped while writing log

36



two-phase commit: setup

every machine votes on transaction

commit — do the operation (add student A to class)

abort — don’t do it (something went wrong)

require unanimity to commit

default=abort

37



two-phase commit: phases

phase 1: preparing

each machine states their intention: agree to commit/abort

phase 2: finishing

gather intentions, figure out whether to do/not do it

single global decision

38



preparing

agree to commit
promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!

to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added b/c of other machines)

39



preparing

agree to commit
promise: “I will accept this transaction”
promise recorded in the machine log in case it crashes

agree to abort
promise: “I will not accept this transaction”
promise recorded in the machine log in case it crashes

never ever take back agreement!to keep promise: can’t allow interfering operations
e.g. agree to add student to class → reserve seat in class
(even though student might not be added b/c of other machines)

39



finishing

learn all machines agree to commit → commit transaction
actually apply transaction (e.g. record student is in class)
record decision in local log

learn any machine agreed to abort → abort transaction
don’t ever try to apply transaction
record decision in local log

unsure which? just ask everyone what they agreed to do
they can’t change their mind once they tell you

40



finishing

learn all machines agree to commit → commit transaction
actually apply transaction (e.g. record student is in class)
record decision in local log

learn any machine agreed to abort → abort transaction
don’t ever try to apply transaction
record decision in local log

unsure which? just ask everyone what they agreed to do
they can’t change their mind once they tell you

40



two-phase commit: blocking

agree to commit “add student to class”?

can’t allow conflicting actions…

adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

41



two-phase commit: blocking

agree to commit “add student to class”?

can’t allow conflicting actions…
adding student to conflicting class?
removing student from the class?
not leaving seat in class?

…until know transaction globally committed/aborted

41



waiting forever?

machine goes away, two-phase commit state is uncertain

never resolve what happens

solution in practice: manual intervention

42



two-phase commit: roles

typical two-phase commit implementation

several workers

one coordinator
might be same machine as a worker

43



two-phase-commit messages

coordiantor → worker: PREPARE
“will you agree to do this action?”
on failure: can ask multiple times!

worker → coordinator: VOTE-COMMIT or VOTE-ABORT
I agree to commit/abort transaction
worker records decision in log, returns same result each time

coordinator → worker: GLOBAL-COMMMIT or GLOBAL-ABORT
I counted the votes and the result is commit/abort
only commit if all votes were commit

44



reasoning about protocols: state machines

very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

45



reasoning about protocols: state machines

very hard to reason about dist. protocol correctness

typical tool: state machine

each machine is in some state

know what every message does in this state

avoids common problem: don’t know what message does

45



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

46



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

46



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

46



coordinator state machine (simplified)

INIT

WAITING

ABORTED COMMITTED

send PREPARE (ask for votes)

receive any AGREE-TO-ABORT
send ABORT

receive AGREE-TO-COMMIT from all
send COMMIT

accumulate votes

resend PREPARE
after timeout

worker resends vote?
gets ABORT

workers resends vote?
gets COMMIT

46



coordinator failure recovery

duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: send ABORT to all (dups okay!)
if COMMITTED: resend COMMIT to all (dups okay!)

message doesn’t make it to worker?
coordinator can resend PREPARE after timeout (or just ABORT)
worker can resend vote to coordinator to get extra reply

47



coordinator failure recovery

duplicate messages okay — unique transaction ID!

coordinator crashes? log indicating last state
log written before sending any messages
if INIT: resend PREPARE,
if WAIT/ABORTED: send ABORT to all (dups okay!)
if COMMITTED: resend COMMIT to all (dups okay!)

message doesn’t make it to worker?
coordinator can resend PREPARE after timeout (or just ABORT)
worker can resend vote to coordinator to get extra reply

47



worker state machine (simplified)

INIT

AGREED-TO-COMMIT

COMMITTED

ABORTED

recv PREPARE
send AGREE-TO-COMMIT

recv PREPARE
send AGREE-TO-ABORT

recv ABORT

recv COMMIT

48



worker failure recovery

duplicate messages okay — unqiue transaction ID!

worker crashes? log indicating last state
if INIT: wait for PREPARE (resent)?
if AGREE-TO-COMMIT or ABORTED: resend
AGREE-TO-COMMIT/ABORT
if COMMITTED: redo operation

message doesn’t make it to coordinator
resend after timeout or during reboot on recovery

49



state machine missing details

really want to specify result of/action for every message!

allows verifying properties of state machine
what happens if machine fails at each possible time?
what happens if possible message is lost?
…

50



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

51



TPC: normal operation

coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=COMMIT

51



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

52



TPC: normal operation — conflict

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
ABORT

AGREE-TO-
COMMIT

ABORT

class is full!
log: state=ABORT

log: state=WAIT

log: state=AGREED-TO-COMMIT

log: state=ABORT

52



TPC: worker failure (1)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
ABORT

ABORT

on reboot — didn’t record transaction
abort it (proactively/when coord. retries)

53



TPC: worker failure (1)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
ABORT

ABORT

on reboot — didn’t record transaction
abort it (proactively/when coord. retries)

53



TPC: worker failure (2)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message

54



TPC: worker failure (2)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message

54



TPC: worker failure (3)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message

55



TPC: worker failure (3)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot — resend logged message
55



extending voting

two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

56



extending voting

two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

56



quorums (1)

A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

57



quorums (1)

A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

57



quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

58



quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

58



quorums (2)

A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

58



quorums (3)

A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

59



quorums (3)

A B C D E

sometimes vary quorum based on operation type

example: update quorum = 4 of 5; read quorum = 2 of 5

requirement: read overlaps with last update

compromise: better performance sometimes, but tolerate less
failures

59



quorums

A B C D E

details very tricky
what about coordinator failures?
how does recovery happen?
what information needs to be logged?
“catching up” nodes that aren’t part of several updates

full details: lookup Raft or Paxos

60



Raft sketch

Raft: quorum consensus algorithm

leader election: agree on leader (≈ coordinator)
elect new leader on leader failure
constraint: can’t be leader if not up-to-date with quorum
enforcement: quorum must elect each leader
nodes only believe in in latest (highest numbered) leader

leader uses other machines (followers) as remote logs
leader ensures quorum logs operations (≈ commits them)

lots of tricky details around failures
e.g. leader starts sending transaction to log + fails

61



quorums for Byzantine failures

just overlap not enough

problem: node can give inconsistent votes
tell A “I agree to commit”, tell B “I do not”

need to confirm consistency of votes with other notes

need supermajority -type quorums
f failures — 3f + 1 nodes

full details: lookup PBFT

62



backup slides

63



NFSv2

NFS (Network File System) version 2

standardized in RFC 1094 (1989)

based on RPC calls

64



NFSv2 RPC calls (subset)

LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

65



NFSv2 RPC calls (subset)

LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failurefile ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

66



NFSv2 client versus server

clients: file descriptor →server name, file ID, offset

client machine crashes? mapping automatically deleted
“fate sharing”

server: convert file IDs to files on disk
typically find unique number for each file
usually by inode number

server doesn’t get notified unless client is using the file

67



file IDs

device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

68



file IDs

device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

68



file IDs

device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

68



NFSv2 RPC calls (subset)

LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

69



NFSv2 RPC (more operations)

READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

70



NFSv2 RPC (more operations)

READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

70



71



72



file locking

so, your program doesn’t like conflicting writes

what can you do?

if offline operation, probably not much…

otherwise file locking

except it often doesn’t work on NFS, etc.

73



advisory file locking with fcntl

int fd = open(...);
struct flock lock_info = {

.l_type = F_WRLCK, // write lock; RDLOCK also available
// range of bytes to lock:
.l_whence = SEEK_SET, l_start = 0, l_len = ...

};
/* set lock, waiting if needed */
int rv = fcntl(fd, F_SETLKW, &lock_info);
if (rv == −1) { /* handle error */ }
/* now have a lock on the file */

/* unlock --- could also close() */
lock_info.l_type = F_UNLCK;
fcntl(fd, F_SETLK, &lock_info);

74



advisory locks

fcntl is an advisory lock

doesn’t stop others from accessing the file…

unless they always try to get a lock first

75



POSIX file locks are horrible

actually two locking APIs: fcntl() and flock()

fcntl: not inherited by fork

fcntl: closing any fd for file release lock
even if you dup2’d it!

fcntl: maybe sometimes works over NFS?

flock: less likely to work over NFS, etc.

76



fcntl and NFS

seems to require extra state at the server

typical implementation: separate lock server

not a stateless protocol

77



lockfiles

use a separate lockfile instead of “real” locks
e.g. convention: use NOTES.txt.lock as lock file

lock: create a lockfile with link() or open() with O_EXCL
can’t lock: link()/open() will fail “file already exists”
for current NFSv3: should be single RPC calls that always contact server
some (old, I hope?) systems: link() atomic, open() O_EXCL not

unlock: remove the lockfile
annoyance: what if program crashes, file not removed?

78


	stateless NFS problems
	on statefulness
	problems with caching
	close-to-open consistency or timing
	AFS: callbacks
	Coda: disconnected operation
	failure
	failure models
	two-phase commit
	two-phase commit: messages
	aside: state machines
	two-phase commit state machine
	two-phase commit examples

	briefly: distributed consensus
	backup slides
	stateless NFS
	file locking


