
access control

1

last time (1)

network filesystem caching

open-to-close consistency
compromise: consistent for ‘typical’ use
check on open
write on close

callbacks for caching
server notifies interested clients

disconnected operation
work on cached data
send updates after reconnecting
problem: conflicting writes from two users?

2

last time (2)

distributed transactions

two phase commit
obtain unanimious vote to commit
procedure to recover from any failure w/logs

quorum
obtain majority vote
gaurentee: someone voting knows about last update
details very tricky

3

protection/security

protection: mechanisms for controlling access to resources
page tables, preemptive scheduling, encryption, …

security: using protection to prevent misuse
misuse represented by policy
e.g. “don’t expose sensitive info to bad people”

this class: about mechanisms more than policies

goal: provide enough flexibility for many policies

4

adversaries

security is about adversaries

do the worst possible thing

challenge: adversary can be clever…

5

authorization v authentication

authentication — who is who

authorization — who can do what
probably need authentication first…

6

authorization v authentication

authentication — who is who

authorization — who can do what
probably need authentication first…

6

authentication

password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

7

authentication

password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

7

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill

each process belongs
to 1+ protection domains:

“user cr4bd”
“group csfaculty”

…

objects (whatever type) with restrictions

8

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

8

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

8

representing access

with objects (files, etc.): access control list
list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

9

representing access

with objects (files, etc.): access control list
list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

10

access control list parts

assign processes to protection domains
typically: process assigned user + group(s)
object (file, etc.) access based on user/group

attach lists to objects (files, processes, etc.)
sometimes very restricted form of list
e.g. can only specify one user + group

11

user IDs

most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

12

POSIX user IDs

uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

13

POSIX user IDs

uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

13

POSIX groups

gid_t getegid(void);
// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

14

id

cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

15

groups that don’t correspond to users

example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

16

POSIX file permissions

POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

(see docs for chmod command)

17

POSIX/NTFS ACLs

more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

18

POSIX ACL syntax

group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions
user:tj1a:−−−

POSIX acl rule:
user take precedence over group entries

19

authorization checking on Unix

checked on system call entry
no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

20

superuser

user ID 0 is special

superuser or root

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

21

how does login work?

somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

22

how does login work?

somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

23

Unix password storage

typical single-user system: /etc/shadow
only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

24

aside: beyond passwords

/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

25

how does login work?

somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

26

changing user IDs

int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

27

sudo

tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

28

set-user-ID sudo

extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

29

set-user ID gates

set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel

way to allow normal users to do one thing that needs privileges
write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

30

uses for setuid programs

mount USB stick
setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

31

set-user-ID program v syscalls

hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

32

set-user ID programs are very hard to write

what if stdin, stdout, stderr start closed?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

33

a delegation problem

consider printing program marked setuid to access printer
decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

34

a broken solution

if (original user can read file from argument) {
open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

35

a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

time-to-check-to-time-of-use vulnerability

36

TOCTTOU solution

temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

37

practical TOCTTOU races?

can use symlinks maze to make check slower
symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

lots of time spent following symbolic links when program opening
toprint.txt

gives more time to sneak in unlink/link or (more likely) rename

38

aside: real/effective/saved

POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID

idea: become other user for one operation, then switch back

39

aside: real/effective/saved

POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID
idea: become other user for one operation, then switch back

39

why so many?

two versions of Unix:

System V — used effective user ID + saved set-user-ID

BSD — used effective user ID + real user ID

POSIX commitee solution: keep both

40

aside: confusing setuid functions

setuid — if root, change all uids; otherwise, only effective uid

seteuid — change effective uid
if not root, only to real or saved-set-user ID

setreuid — change real+effective; sometimes saved, too
if not root, only to real or effective or saved-set-user ID

…

more info: Chen et al, “Setuid Demystified”
https://www.usenix.org/conference/
11th-usenix-security-symposium/setuid-demystified

41

https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified
https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified

also group-IDs

processes also have a real/effective/saved-set group-ID

can also have set-group-ID executables

same as set-user-ID, but only changes groupo

42

ambient authority

POSIX permissions based on user/group IDs process has
correct user/group ID — can read file
correct user ID — can kill process

permission information “on the side”
separate from how to identify file/process

sometimes called ambient authority

“there’s authorizationin the air…”

alternate approach: ability to address = permission to access

43

	protection v security
	security: authentication v authorization
	access matrix/control list
	access control lists
	POSIX user IDs
	POSIX groups
	file permissions

	authorizaton on Unix
	where checking happens
	superuser
	/bin/login
	sudo/set-user-ID
	set-user-ID programs are hard to write
	aside: TOCTTOU
	real/effective/saved

	capabilities
	ambient authority v. capability idea

