
virtual machines

1

Changelog

Changes made in this version not seen in first lecture:
23 April 2019: rearrange slide order to better match lecture order
23 April 2019: change ‘real page table’ to ‘shadow page table’ in some
places
23 April 2019: move layering slide earlier

1

capabilities

token to identify = permission to access

typically opaque token

2

some capability list examples

file descriptors
list of open files process has acces to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

3

some capability list examples

file descriptors
list of open files process has acces to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

3

sharing capabilities

capability-based OSes have ways of sharing capabilities:

inherited by spawned programs
file descriptors/page tables do this

send over local socket or pipe
usually supported for file descriptors!
(look up SCM_RIGHTS — how it works different for Linux v. OS X v.
FreeBSD v. …)

4

Capsicum: practical capabilities for UNIX (1)

Capsicum: research project from Cambridge

adds capabilities to FreeBSD by extending file descriptors

opt-in: can set process to require capabilities to access objects
instead of absolute path, process ID, etc.

capabilities = fds for each directory/file/process/etc.

more permissions on fds than read/write
execute
open files in (for fd representing directory)
kill (for fd reporesenting process)
…

5

Capsicum: practical capabilities for UNIX (2)

capabilities = no global names

no filenames, instead fds for directories
new syscall: openat(directory_fd, "path/in/directory")
new syscall: fexecv(file_fd, argv)

no pids, instead fds for processes
new syscall: pdfork()

6

alternative to per-process tables

file descriptors: different in every process
use special functions to move between processes

alternate idea: same number in every process
one big table

sharing token = copy number

but how to control access? make numbers hard to guess

example: use random 128-bit numbers

7

sandboxing

sandbox — restricted environment for program

idea: dangerous code can play in the sandbox as much as it wants

can’t do anything harmful

8

sandbox use cases

buggy video parsing code that has buffer overflows

browser running scripts in webpage

autograder running student submissions

…

(parts of) program that don’t need to have user’s full permissions

no reason video parsing code should be able open() my taxes

can we have a way to ask OS for this?

9

sandbox use cases

buggy video parsing code that has buffer overflows

browser running scripts in webpage

autograder running student submissions

…

(parts of) program that don’t need to have user’s full permissions
no reason video parsing code should be able open() my taxes

can we have a way to ask OS for this?

9

Google Chrome architecture

10

sandboxing mechanisms

create a new user with few privileged, switch to user
problem: creating new users usually requires sysadmin access
problem: every user can do too much
e.g. everyone can open network connection?

with capabilities, just discard most capabilities
just close capabilities you don’t need
run rendering engine with only pipes to talk to browser kernel

otherwise: system call filtering
disallow all ‘dangerous’ system calls

11

Linux system call filtering

seccomp() system call

“strict mode”: only allow read/write/_exit/sigreturn
current thread gives up all other privileges
usage: setup pipes, then communicate with rest of process via pipes

alternately: setting a whitelist of allowed system calls + arguments
little programming language (!) for supported operations

browsers use this to protect from bugs in their scripting
implementations

hope: find a way to execute arbitrary code? — not actually useful

12

sandbox browser setup

create pipe

spawn subprocess (“rendering engine”)

put subproces in strict system call filter mode

send subprocesses webpages + events

subprocess sends images to render back on pipe

13

sandboxing use case: buggy video decoder
/* dangerous video decoder to isolate */
int main() {

EnterSandbox();
while (fread(videoData, sizeof(videoData), 1, stdin) > 0) {

doDangerousVideoDecoding(videoData, imageData);
fwrite(imageData, sizeof(imageData), 1, stdout);

}
}

/* code that uses it */
FILE *fh = RunProgramAndGetFileHandle("./video-decoder");
for (;;) {

fwrite(getNextVideoData(), SIZE, 1, fh);
fread(image, sizeof(image), 1, fh);
displayImage(image);

}

14

15

recall: the virtual machine interface

application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

16

recall: the virtual machine interface

application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

16

system virtual machine

goal: imitate hardware interface

what hardware?
usually — whatever’s easiest to emulate

17

system virtual machine terms

hypervisor or virtual machine monitor
something that runs system virtual machines

guest OS
operating system that runs as application on hypervisor

host OS
operating system that runs hypervisor
sometimes, hypervisor is the OS (doesn’t run normal programs)

18

imitate: how close?

full virtualization
guest OS runs unmodified, as if on real hardware

paravirtualization
small modifications to guest OS to support virtual machine
might change, e.g., how page table entries are set
why — we’ll talk later

fuzzy line — custom device drivers sometimes not called
paravirtualization

19

multiple techniques

today: talk about one way of implementing VMs

there are some variations I won’t mention

…or might not have time to mention

one variation: extra HW support for VMs (if time)

one variation: compile guest OS code to new machine code
not as slow as you’d think, sometimes

20

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

21

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

21

VM layering (intro)

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode ≈ hypervisor’s process

kernel
mode

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

21

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

22

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

22

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

22

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

22

VM layering

guest OS program

‘guest’ OS

hypervisor

hardware

conceptual layering

user
mode

kernel
mode

guest OS registers
page table: physical to machine addresses
I/O devices guest OS can access
…

hypervisor tracks…

same as for normal process so far…
(except renamed virtual/physical addrs)

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

whether in user/kernel mode
guest OS page table ptr (virt to phys)

guest OS exception table ptr
…

extra state to impl. pretend kernel mode
paging, protection, exceptions/interrupts

virtual to machine address page table …
virtual machine state

extra data structures to
translate pretend kernel mode info
to form real CPU understands

22

process control block for guest OS

guest OS runs like a process, but…

have extra things for hypervisor to track:

if guest OS thinks interrupts are disabled

what guest OS thinks is it’s interrupt handler table

what guest OS thinks is it’s page table base register

if guest OS thinks it is running in kernel mode

…
23

hypervisor basic flow

guest OS operations trigger exceptions
e.g. try to talk to device: page or protection fault
e.g. try to disable interrupts: protection fault
e.g. try to make system call: system call exception

hypervisor exception handler tries to do what processor would
“normally” do

talk to device on guest OS’s behalf
change “interrupt disabled” flag for hypervisor to check later
invoke the guest OS’s system call exception handler

24

virtual machine execution pieces

making IO and kernel-mode-related instructions work
solution: trap-and-emulate
force instruction to cause fault
make fault handler do what instruction would do
might require reading machine code to emulate instruction

making exceptions/interrupts work
‘reflect’ exceptions/interrupts into guest OS
same setup processor would do …
but do setup on guest OS registers + memory

making page tables work
it’s own topic

25

trap-and-emulate (1)

normally: privileged instructions trigger fault
e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

26

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering
pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

27

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

27

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

27

privileged I/O flow

program

‘guest’ OS

hypervisor

hardware

conceptual layering

pretend
user
mode
pretend
kernel
mode
real
kernel
mode

try to
access device

protection
fault

actually talk to device

update guest OS state
then switch back

…

27

trap-and-emulate: psuedocode

trap(...) {
...
if (is_read_from_keyboard(tf−>pc)) {

do_read_system_call_based_on(tf);
}
...

}

idea: translate privileged instructions into system-call-like operations

usually: need to deal with reading arguments, etc.

28

recall: xv6 keyboard I/O

...
data = inb(KBDATAP);
/* compiles to:

mov $0x60, %edx
in %dx, %al <-- FAULT IN USER MODE

*/
...

in user mode: triggers a fault

in instruction — read from special ‘I/O address’

but same idea applies to mov from special memory address + page
fault

29

more complete pseudocode (1)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}

30

more complete pseudocode (1)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}

30

more complete pseudocode (1)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in kernel mode) {
char *pc = tf−>pc;
if (is_in_instr(pc)) { // interpret machine code!

...
int src_address = get_instr_address(instrution);
switch (src_address) {

...
case KBDATAP:

char c = do_syscall_to_read_keyboard();
tf−>registers[get_instr_dest(pc)] = c;
tf−>pc += get_instr_length(pc);
break;
...

}
}

}
...

}

30

trap-and-emulate (1)

normally: privileged instructions trigger fault
e.g. accessing device memory directly (page fault)
e.g. changing the exception table (protection fault)

normal OS: crash the program

hypervisor: pretend it did the right thing
pretend kernel mode: the actual privileged operation
pretend user mode: invoke guest’s exception handler

31

more complete pseudocode (2)

trap(...) { // tf = saved context (like xv6 trapframe)
...
else if (exception_type == PROTECTION_FAULT

&& guest OS in user mode) {
...
tf−>in_kernel_mode = TRUE;
tf−>stack_pointer = /* guest OS kernel stack */;
tf−>pc = /* guest OS trap handler */;

}
}

32

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

33

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

33

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler
hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception table

different guest OS pages accessible
in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

33

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception table

different guest OS pages accessible
in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

33

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

33

system call/exception flow (part 1)

program

‘guest’ OS

hypervisor

hardware

system call
(exception)

exception handler
page table update

return from exec.

“real” syscall handler

hardware invokes hypervisor’s system call handler
software marks guest as as in “fake kernel mode”
change guest PC to addr. from guest exception tabledifferent guest OS pages accessible

in user v. kernel mode
(this case: could defer updates till page fault)

setup guest OS to run its exception handler
switch to user mode to run it

33

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

34

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

34

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

34

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

34

system call/exception flow (part 2)

program

‘guest’ OS

hypervisor

hardware

return from exception
(in “real” syscall handler)

in user mode,
can’t do that

exception handler
for protection fault

page table update
return from exec.

34

trap and emulate (2)

guest OS should still handle exceptions for its programs

most exceptions — just “reflect” them in the guest OS

look up exception handler, kernel stack pointer, etc.
saved by previous privilege instruction trap

35

reflecting exceptions

trap(...) {
...

else if (exception_type == /* most exception types */
&& guest OS in user mode) {

...
tf−>in_kernel_mode = TRUE;
tf−>stack_pointer = /* guest OS kernel stack */;
tf−>pc = /* guest OS trap handler */;

}

36

trap and emulate (3)

what about memory mapped I/O?

when guest OS tries to access “magic” device address, get page
fault

need to emulate any memory writing instruction!

(at least) two types of page faults for hypervisor
guest OS trying to access device memory — emulate it
guest OS trying to access memory not in its page table — run exception
handler in guest

(and some more types — next topic)

37

trap and emulate (3)

what about memory mapped I/O?

when guest OS tries to access “magic” device address, get page
fault

need to emulate any memory writing instruction!

(at least) two types of page faults for hypervisor
guest OS trying to access device memory — emulate it
guest OS trying to access memory not in its page table — run exception
handler in guest

(and some more types — next topic)
37

trap and emulate not enough

trap and emulate assumption: can cause fault

priviliged instruction not in kernel

memory access not in hypervisor-set page table

…

until ISA extensions, on x86, not always possible

if time, (pretty hard-to-implement) workarounds later

38

things VM needs

normal user mode intructions
just run it in user mode

guest OS I/O or other privileged instructions
guest OS tries I/O/etc. — triggers exception
hypervisor translates to I/O request
or records privileged state change (e.g. switch to user mode) for later

guest OS exception handling
track “guest OS thinks it in kernel mode”?
record OS exception handler location when ‘set handler’ instruction faults
hypervisor adjust PC, stack, etc. when guest OS should have exception

guest OS virtual memory
???

39

things VM needs

normal user mode intructions
just run it in user mode

guest OS I/O or other privileged instructions
guest OS tries I/O/etc. — triggers exception
hypervisor translates to I/O request
or records privileged state change (e.g. switch to user mode) for later

guest OS exception handling
track “guest OS thinks it in kernel mode”?
record OS exception handler location when ‘set handler’ instruction faults
hypervisor adjust PC, stack, etc. when guest OS should have exception

guest OS virtual memory
???

39

terms for this lecture

virtual address — virtual address for guest OS

physical address — physical address for guest OS

machine address — physical address for hypervisor/host OS

40

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

41

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

41

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for this

the translation the processor needs
when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

41

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for this

the translation the processor needs
when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

41

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

41

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversion

hardware knows about
only this PT

guest OS knows about
only this PT

41

three page tables

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

page table pointer guest
set with privileged instruction
(x86: mov …, %cr3)
hypervisor records on protection fault

need to allow OS to use any address
run multiple guests in same memory
dynamically allocate memory
normally: use page table for thisthe translation the processor needs

when running normal user code

must be in some actual page table

shadow
page table

hypervisor conversionhardware knows about
only this PT

guest OS knows about
only this PT

41

page table synthesis question

creating new page table = two PT lookups
lookup in guest OS page table
lookup in hypervisor page table (or equivalent)

synthesize new page table from combined info

Q: when does the hypervisor update the shadow page table?

42

page table synthesis question

creating new page table = two PT lookups
lookup in guest OS page table
lookup in hypervisor page table (or equivalent)

synthesize new page table from combined info

Q: when does the hypervisor update the shadow page table?

42

interlude: the TLB

Translation Lookaside Buffer — cache for page table entries

what the processor actually uses to do address translation with
normal page tables

has the same problem

contents synthesized from the ‘normal’ page table

processor needs to decide when to update it

preview: hypervisor can use same solution
43

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

44

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

44

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?
VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

44

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

44

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0x4298, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

44

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0xFFFF, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

44

Interlude: TLB (no virtualization)

virtual
address

physical
addresspage table

TLB

fetch entries
on demand

addr in VPN 0x234?

VPN PTE
0x127 PPN=0x1280, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

0x234
missing

VPN PTE
0x127 PPN=0x1280, …
0x234 PPN=0x4298, …
0x367 PPN=0x1278, …
0x78A PPN=0xFF31, …
… …

VPN PTE
0x1 (invalid)
0x2 PPN=0x329C, …
… …
0x234 PPN=0xFFFF, …
0x235 PPN=0x1278, …
… …

imitating this to fill
shadow page table
(instead of TLB)
in hypervisor
(instead of CPU)

fetch on page fault

OS sets page table entry

TLB not automatically sync’d

OS explicitly
invalidates

44

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

shadow
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

45

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

shadow
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

45

three page tables (revisited)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

hypervisor conversion

shadow
page table

when guest OS edits this
runs privileged instruction
to fix up TLB

hypervisor clears (part of) this
whenever guest OS runs
TLB-fixing instruction

45

alternate view of shadow page table

shadow page table is like a virtual TLB

caches commonly used page table entries in guest

entries need to be in shadow page table for instructions to run

needs to be explicitly cleared by guest OS

implicitly filled by hypervisor

46

on TLB invalidation

two major ways to invalidate TLB:

when setting a new page table base pointer
e.g. x86: mov ..., %cr3

when running an explicit invalidation instruction
e.g. x86: invlpg

hopefully, both privileged instructions

47

nit: memory-mapped I/O

recall: devices which act as ‘magic memory’

hypervisor needs to emulation

keep corresponding pages invalid for trap+emulate
page fault triggers instruction emulation instead

48

problem with filling on demand

many OSes: invalidate entire TLB on context switch
assumption: TLB only holds entries from one process

so, rebuild shadow page table on each guest OS context switch?

this is often unacceptably slow

want to cache the shadow page tables

problem: OS won’t tell you when it’s writing

49

aside: tagged TLBs

some TLBs support holding entries from multiple page tables
entries “tagged” with page table they are from

…but not x86 until pretty recently

allows OSs to not invalidate entire TLB on context switch

starting to be used by OSes

would be really helpful for our virtual machine proposals
lots of page table switches

50

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
for pid 1 only

hypervisor conversion

contains only pid 1 data
only active page table
guest OS switches page tables
all entries potentially invalid
refilled as guest pid 2 runs
problem: slow
…and repeat process again
when switching back to pid 1

51

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
for pid 1 only

hypervisor conversioncontains only pid 1 data
only active page table

guest OS switches page tables
all entries potentially invalid
refilled as guest pid 2 runs
problem: slow
…and repeat process again
when switching back to pid 1

51

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
(((((((((hhhhhhhhhfor pid 1 only
for pid 2 only

hypervisor conversion

contains only pid 1 data
only active page table

guest OS switches page tables
all entries potentially invalid

refilled as guest pid 2 runs
problem: slow
…and repeat process again
when switching back to pid 1

51

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
(((((((((hhhhhhhhhfor pid 1 only
for pid 2 only

hypervisor conversion

contains only pid 1 data
only active page table
guest OS switches page tables
all entries potentially invalid

refilled as guest pid 2 runs
problem: slow

…and repeat process again
when switching back to pid 1

51

problem with filling on demand

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table
for pid 1 only
(((((((((hhhhhhhhhfor pid 2 only

hypervisor conversion

contains only pid 1 data
only active page table
guest OS switches page tables
all entries potentially invalid
refilled as guest pid 2 runs
problem: slow

…and repeat process again
when switching back to pid 1

51

proactively maintaining page tables

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table for pid 1

shadow page table for pid 2

hypervisor conversion
maintain multiple shadow PTs
only one active as hardware page table

still needs to be updated
even if not active hardware PT

guest can update while
not active hardware PT

52

proactively maintaining page tables

virtual
address

physical
address

machine
address

guest pid 1
page table

guest pid 2
page table

hypervisor
page table?

shadow page table for pid 1

shadow page table for pid 2

hypervisor conversion

maintain multiple shadow PTs
only one active as hardware page table

still needs to be updated
even if not active hardware PT

guest can update while
not active hardware PT

52

proactively maintaining page tables

track physical pages that are part of any page tables
update list on page table base register write?
update list while filling shadow page table on demand

make sure marked read-only in shadow page tables

use trap+emulate to handles writes to guest page tables

(…even if not current active guest page tables)

on write to page table: update shadow page table

53

pros/cons: proactive over on-demand

pro: work with guest OSs that make assumptions about TLB size

pro: maintain shadow page table for each guest process
can avoid reconstructing each page table on each context switch

pro: better fit with tagged TLBs

con: more instructions spent doing copy-on-write

con: what happens when page table memory recycled?

54

page tables and kernel mode?

guest OS can have kernel-only pages

guest OS in pretend kernel mode
shadow PTE: marked as user-mode accessible

guest OS in pretend user mode
shadow PTE: marked inaccessible

55

four page tables? (1)

virtual
address

physical
address

machine
address

guest
page table

hypervisor
page table?

shadow page table
(pretend kernel mode)

shadow page table
(pretend user mode)

56

four page tables? (2)

one solution: pretend kernel and pretend user shadow page table

alternative: clear page table on kernel/user switch

neither seems great for overhead

57

interlude: VM overhead

some things much more expensive in a VM:

I/O via priviliged instructions/memory mapping
typical strategy: instruction emulation

58

exercise: overhead?

guest program makes read() system call

guest OS switches to another program

guest OS gets interrupt from keyboard

guest OS switches back to original program, returns from syscall

how many guest page table switches?

how many (real/shadow) page table switches?

59

60

backup slides

61

talking to the sandbox

browser kernel sends commands to sandbox

sandbox sends commands to browser kernel

idea: commands only allow necessary things

62

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

63

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

63

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLs

can still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

63

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

63

original Chrome sandbox interface

sandbox to browser “kernel”
show this image on screen

(using shared memory for speed)
make request for this URL
download files to local FS
upload user requested files

browser “kernel” to sandbox
send user input

needs filtering — at least no file: (local file) URLscan still read any website!
still sends normal cookies!

files go to download directory only
can’t choose arbitrary filenames

browser kernel displays file choser
only permits files selected by user

63

	security finish
	capability concept

	sandboxing / seccomp
	sandboxing code: video decoder

	virtual machine: concept
	layering

	VM execution pieces
	trap-and-emulate

	pause: emulation pieces
	managing page tables
	three page tables
	supporting user/kernel mode

	on VM overhead
	backup slides
	Chrome architecture

