
virtual machine (pt 2) / microkernels

1

last time (1)

sandboxing — filter system calls

guest OS running in hypervisor on host OS

hypervisor tracks virtual machine state
does guest OS think it’s in kernel mode?
does guest OS think interrupts are enabled?
…

virtual machines: trap and emulate
make some operation (IO, etc.) cause exception
exception handler imitates operation
e.g. read-from-keyboard-controller → host OS read() syscall
e.g. system call → invoke guest OS syscall handler

2

last time (2)

virtual machine virtual memory
virtual / physical / machine addresses

guest page table: virtual → physical

shadow page table: physical → machine
possibly two: kernel/user

option one: fill shadow page table on demand
guest OS indicates writes via TLB invalidations

option two: maintain shadow page table via trap-and-emulate
mark guest page tables as read-only
emulate write instruction to modify guest+shadow table

3

interlude: VM overhead

some things much more expensive in a VM:

I/O via priviliged instructions/memory mapping
typical strategy: instruction emulation

4

exercise: overhead?

guest program makes read() system call

guest OS switches to another program

guest OS gets interrupt from keyboard

guest OS switches back to original program, returns from syscall

how many guest page table switches?

how many (real/shadow) page table switches?

5

hardware hypervisor support

Intel’s VT-x

HW tracks whether a VM is running, how to run hypervisor
new VMENTER instruction
instruction switches page tables, sets program counter, etc.

HW tracks value of guest OS registers as if running normally

new VMEXIT interrupt — run hypervisor when VM needs to stop
exits ‘VM is running mode’, switch to hypervisor

6

hardware hypervsior support

VMEXIT triggered regardless of user/kernel mode
means guest OS kernel mode can’t do some things
real I/O device, unhandled priviliged instruction, …

partially configurable: what instructions cause VMEXIT
reading page table base? writing page table base? …

partially configurable: what exceptions cause VMEXIT
otherwise: HW handles running guest OS exception handler instead

no VMEXIT triggered? guest OS runs normally (in kernel mode!)

7

HW help for VM page tables

already avoided two shadow page tables:
HW user/kernel mode now separate from hypervisor/guest

but HW can help a lot more

8

tagged TLBs

hardware includes “address space ID” in TLB entries

also helpful for normal OSes — faster context switching

hypervisor and/or OS sets address space ID when switching page
tables

extra work for OS/hypervisor:
need to flush TLB entries even when changing non-active page tables

9

nested page tables

virtual → physical → machine

hypervisor specifies two page table base registers
guest page table base — as physical address
hypervisor page table base — as machine address

guest page table contains physical (not machine) addresses

hardware walks guest page table using hypervisor page table
guest page table contains physical addresses
hardware translates each physical page number to machine page number

nested 2-level page tables: how many lookups?

10

nested 2-level tables

guest
base ptr

guest
1st level

guest
2nd level

hypervisor
1st level

hypervisor
2nd level

machine
address

virtual addr
VPN pt 1 VPN pt 2 Page Offset

11

non-virtualization instrs.

assumption: priviliged operations cause exception instead
and can keep memory mapped I/O to cause exception instead

many instructions sets work this way

x86 is not one of them

12

POPF

POPF instruction: pop flags from stack
condition codes — CF, ZF, PF, SF, OF, etc.
direction flag (DF) — used by “string” instructions
I/O privilege level (IOPL)
interrupt enable flag (IF)
…

some flags are privileged!

popf silently doesn’t change them in user mode

13

POPF

POPF instruction: pop flags from stack
condition codes — CF, ZF, PF, SF, OF, etc.
direction flag (DF) — used by “string” instructions
I/O privilege level (IOPL)
interrupt enable flag (IF)
…

some flags are privileged!

popf silently doesn’t change them in user mode

13

PUSHF

PUSHF: push flags to stack

write actual flags, include privileged flags

hypervisor wants to pretend those have different values

14

handling non-virtualizable

option 1: patch the OS
typically: use hypervisor syscall for changing/reading the special flags,
etc.
‘paravirtualization’
minimal changes are typically very small — small parts of kernel only

option 2: binary translation
compile machine code into new machine code

option 3: change the instruction set
after VMs popular, extensions made to x86 ISA
one thing extensions do: allow changing how push/popf behave

15

monolithic versus microkernel

apps
libraries calls

standard libraries
system call interface

kernel

hardware interface
hardware

sched. filesystems
sockets virt. mem.
devices signals
pipes swapping

system call interface
kernel

hardware interface
hardware

std. lib.
lib calls
apps

device
drivers

file
system

network
driver …

microkernel
minimal functionality in kernel mode
device drivers are separate proceses
run in userspace? more modular?
kernel provides fast communication
to device drivers, etc.

16

monolithic versus microkernel

apps
libraries calls

standard libraries
system call interface

kernel

hardware interface
hardware

sched. filesystems
sockets virt. mem.
devices signals
pipes swapping

system call interface
kernel

hardware interface
hardware

std. lib.
lib calls
apps

device
drivers

file
system

network
driver …

microkernel
minimal functionality in kernel mode

device drivers are separate proceses
run in userspace? more modular?
kernel provides fast communication
to device drivers, etc.

16

monolithic versus microkernel

apps
libraries calls

standard libraries
system call interface

kernel

hardware interface
hardware

sched. filesystems
sockets virt. mem.
devices signals
pipes swapping

system call interface
kernel

hardware interface
hardware

std. lib.
lib calls
apps

device
drivers

file
system

network
driver …

microkernel
minimal functionality in kernel mode

device drivers are separate proceses
run in userspace? more modular?

kernel provides fast communication
to device drivers, etc.

16

monolithic versus microkernel

apps
libraries calls

standard libraries
system call interface

kernel

hardware interface
hardware

sched. filesystems
sockets virt. mem.
devices signals
pipes swapping

system call interface
kernel

hardware interface
hardware

std. lib.
lib calls
apps

device
drivers

file
system

network
driver …

microkernel
minimal functionality in kernel mode
device drivers are separate proceses
run in userspace? more modular?

kernel provides fast communication
to device drivers, etc.

16

microkernel services

interprocess communication
performance is very important
used to communicate with OS services

raw access to devices
map device controller memory to device drivers
forward interrupts

CPU scheduling
tied to interprocess communication

virtual memory

hope: everything else handled by userspace servers
17

microkernel services

physical memory access
including device controller acccess

CPU scheduling

interrupts/exceptions access

communication

synchronization

18

seL4

example microkernel: seL4

notable as formally verified
machine-checked proof of some properties

uses microkernel design

19

seL4 system calls (full list)

send message: Send, NBSend, Reply

recv message: Recv, NBRecv

send+recv message: Call, ReplyRecv
to avoid requiring two syscalls

Yield() (run scheduler)

20

seL4 kernel services?

but how to allocate memory, threads, etc.???

can send messages to kernel objects
same syscall as talking to device driver, other app, etc.

21

seL4 naming

where to send/recv from?

seL4 answer: capabilities
opaque tokens ∼ file descriptors
indicate allowed operations (read, write, etc.)

represent everything
other processes
kernel objects (= thread, physical memory, …)

can be passed in messages

22

seL4 naming

where to send/recv from?

seL4 answer: capabilities
opaque tokens ∼ file descriptors
indicate allowed operations (read, write, etc.)

represent everything
other processes
kernel objects (= thread, physical memory, …)

can be passed in messages

22

seL4 objects

kernel objects — named via capability

have “methods”
invoked via Sending message

23

seL4 kernel objects (x86-3)

capability storage — Cnode

threads — TCB (thread control block)

IPC — Endpoint, Notification

virtual memory —- PageDirectory, PageTable

available memory — Frame, Untyped

interrupts — IRQControl, IRQHandler

(and a few more)

24

seL4 choices

abstract hardware pretty directly
expose page table structure, interrupts, etc.
let libraries, userspace services handle making interface generic

no kernel memory allocation
userspace code controls how physical memory is assigned
…including memory for kernel objects!

25

seL4 choices

abstract hardware pretty directly
expose page table structure, interrupts, etc.
let libraries, userspace services handle making interface generic

no kernel memory allocation
userspace code controls how physical memory is assigned
…including memory for kernel objects!

25

seL4 object conversion

most memory starts as Untyped objects

cannot, e.g., just say “make a new TCB”

instead: derive TCB from Untyped
= allocate TCB in this memory

cannot say “allocate me memory”

instead: derive Frame from Untyped
= allocate Frame (physical page) in this memory

…and add Frame to PageTable
26

seL4 capabilities

objects represented by capabilities

capability takes slot in Cnode
capability storage — like file descriptor table

can copy capabilities
and drop some permissions (e.g. read-only copy)

can copy derived capabilities to other processes

27

seL4 object deletion?

what about deleting objects
capability ≈ pointer to object

kernel tracks reference count of every object

reference count = 0 → original deleted
available again via Untyped object

deleting Cnode (capability table)? recursive deletion

28

seL4 object deletion?

what about deleting objects
capability ≈ pointer to object

kernel tracks reference count of every object

reference count = 0 → original deleted
available again via Untyped object

deleting Cnode (capability table)? recursive deletion

28

derived capabilities and revocation

kernel tracks “children” of capabilities

example: endpoint of device driver copied to many clients

revoking parent capability

also deletes all children
try to access server now? “sorry, it’s closed”

29

derived capabilities (figure)

figure from seL4 manual 30

seL4 messages

“tag” — message type + size

“badges” — identifying source
multiple virtual endpoints which go to same server
badge says which sender used

one or more “message words”
first few stored in CPU registers (for speed)
additional ones stored in per-thread buffer

one or more capabilities

31

seL4 IPC destinations

each kernel object is message destination
method invocation = send message + recieve reply
can imitate kernel object perfectly with user server

server endpoints are badged
server gives out different badge for each client
allows one server to handle multiple services
way to add badges when handing out capabilities

32

seL4 IPC destinations

each kernel object is message destination
method invocation = send message + recieve reply
can imitate kernel object perfectly with user server

server endpoints are badged
server gives out different badge for each client
allows one server to handle multiple services
way to add badges when handing out capabilities

32

synchronous IPC

seL4 messages are synchronous

Send() waits for corresponding Recv() to happen

advantage: message not copied into kernel buffer

advantage: handle message by context switching to target process

fast path: message entirely in all in registers

fast path: scheduler switches directly from sender to receiver

33

synchronous IPC

seL4 messages are synchronous

Send() waits for corresponding Recv() to happen

advantage: message not copied into kernel buffer

advantage: handle message by context switching to target process

fast path: message entirely in all in registers

fast path: scheduler switches directly from sender to receiver

33

Send() cases

Send() to kernel object: invoke kernel handler, reply

Send() to program ready to recieve: just context switch now

Send() to program not ready to recieve: add thread to queue
then context switch to something else, Send() always blocks

Send() to invalid destination: reply with error

34

SendRecv() optimization

system call combining Send() + Recv()

ideal usage:

context switch to service to Send()

service handles message and replies

context switch from service to Recv()

combined system call: ready to recieve immediately after Send()
always using “just context switch now” code

35

notifications: async IPC

seL4 message passing is synchronous

seL4 also supports simple asynchronous IPC

Notification = bianry semaphores

Signal (up) and Wait (down) operations

special: can signal/wait on multiple semaphores at once
e.g. wait for one of several events

36

notifications versus messages

notifications don’t block

signal and forget
not possible for message Send()!

multiple threads can wait at once
possibly easier than messages for coordinating?

37

seL4 virtual memory: do it yourself

Thread associated with PageDirectory+PageTable objects

send messages to object to map pages

kernel tracks reference counts
can share pages between threads

38

sel4 virtual memory: page faults?

what about copy-on-write?

you can do that yourself!

each thread as exception endpoint

exceptions become message-sends
can setup page-fault-handler thread/server
give it capabilities to your PageDirectory

39

sel4 virtual memory: page faults?

what about copy-on-write?

you can do that yourself!

each thread as exception endpoint

exceptions become message-sends
can setup page-fault-handler thread/server
give it capabilities to your PageDirectory

39

userspace page fault handlers

message sent to page-fault handler thread
page fault at address X accessing address Y …

thread uses PageDirectory/PageTable objects

then replies to message — restarting original thread

same applies to other exceptions
divide by zero, illegal instruction, etc.

40

userspace page fault handlers

message sent to page-fault handler thread
page fault at address X accessing address Y …

thread uses PageDirectory/PageTable objects

then replies to message — restarting original thread

same applies to other exceptions
divide by zero, illegal instruction, etc.

40

seL4 IO and Interrupts

I/O: give device drivers Frames for device controller memory

kernel forwards interrupts as messages

provides protocol for acknowledging interrupts

41

(poorly?) selected other OS designs

Exokernel (late 90s)
kernel’s only job is sharing hardware
no attempt to abstract hardware resources
explicit resource revocatoin

Singularity
OS is a language virtual machine interpreter
no virtual memory

something for datacenters/manycore?

42

Exokernel

heavily certainly influenced seL4’s design

key idea: kernel only securely multiplexes (shares) resources

programs have a “library operating system” to talk to kernel

43

Exokernel philosophy

kernel provides almost exactly the hardware interface
direct access if safe

kernel’s only job: filter hardware usage for safety
safety: your program doesn’t access things it shouldn’t

program libraries handle all abstractions

44

Exokernel: memory multiplexing

capabilities for physical memory pages (like seL4)

use capability to request virtual to physical mappings (like seL4)

but…kernel can take back pages

tells library operating system “I’m going to need a page back”

library operating system needs to deallocate a page
if it doesn’t quickly enough — reclaim by force (lost data?)

45

Exokernel: network multiplexing

kernel doesn’t implement sockets — only raw “send message”

kernel filters outgoing packets sent by programs
filter = port numbers you are assigned

library operating system handles all details of sockets

46

Exokernel: CPU multiplexing

kernel does not keep thread control blocks

instead: library OS says “start running here”
library OS has its own “start the right thread” code

library OS supplies ‘exception’ handling code locations

e.g., on timer expiration:
kernel runs library OS “stop running now” handler
if that code doesn’t yield to OS quickly, then kernel kills program

e.g., on IO event:
kernel runs library OS “I/O event happened” handler
library OS can do context switch itself

47

Singularity

Microsoft Research (2003-2010)

OS runs CIL (Common Intermediate Language) code
bytecode, similar idea to Java bytecode

software-based isolation
no page tables at all
rely on bytecode to keep processes from access each other’s memory

probably has huge issues with recently discovered Spectre/etc.
attacks

48

Singularity: performance arguments

from Hunt and Larus, “Singularity: Rethinking the Software Stack” (2006) 49

Singularity issues

is software-based isolation trustable?

need to verify bytecode → machine code compiler
but only enough to prove memory-safety/etc.

Specture/Meltdown = information leaks through caches, etc.
probably need hardware isolation to prevent these
not known when Singularity prototyped

50

datacenter OS ideas?

OS distributed across multiple servers?
especially attractive with very fast interconnections (e.g. PCI)

OSes specialized for running virtual machines?

51

manycore OS ideas?

future of thousands of cores?

want to schedule many cores together
hypothesis: efficient applications use multiple cores at once

faster to talk to other core than context switch?
store+load into shared cache versus context switch

52

backup slides

53

binary translation

compile assembly to new assembly

works without instruction set support

early versions of VMWare on x86

later, x86 added HW support for virtualization

multiple ways to implement, I’ll show one idea
similar to Ford and Cox, “Vx32: Lightweight, User-level Sandboxing on
the x86”

54

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

55

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

55

binary translation idea

0x40FE00: addq %rax, %rbx
movq 14(%r14,4), %rdx
addss %xmm0, (%rdx)
...
0x40FE3A: jne 0x40F404

divide machine code
into basic blocks
(= “straight-line” code)
(= code till
jump/call/etc.)

generated code:
// addq %rax, %rbx
movq rax_location, %rdi
movq rbx_location, %rsi
call checked_addq
movq %rax, rax_location
...
// jne 0x40F404
... // get CCs
je do_jne
movq $0x40FE3F, %rdi
jmp translate_and_run
do_jne:
movq $0x40F404, %rdi
jmp translate_and_run

subss %xmm0, 4(%rdx)
...
je 0x40F543
ret

55

a binary translation idea

convert whole basic blocks
code upto branch/jump/call

end with call to translate_and_run
compute new simulated PC address to pass to call

56

making binary translation fast

only have to convert kernel code
and only some of the kernel code

cache converted code
translate_and_run checks cache first

patch calls to translate_and_run to jmp to cached code

do something more clever than movq rax_location, ...
map (some) registers to registers, not memory

ends up being “just-in-time” compiler

57

—

57

	on VM overhead
	hardware support
	non-virtualizable instructions
	minimal kernels?
	seL4 design
	seL4 kernel-managed objects
	seL4 capability manipulation
	seL4 IPC (messages)
	seL4 IPC (async)
	seL4 VM and exceptions
	seL4 IO

	other alternate OS designs
	backup slides
	binary translation?

