
intro / what is an OS / processes and system
calls

1

Changelog
14 January 2020: reorganize slides to move process definition earlier

14 January 2020: use “64” instead of “0x40” in write() flow chart
to be more consistent with code shown later

1

course webpage
https://www.cs.virginia.edu/~cr4bd/4414/S2020/

linked off Collab

2

https://www.cs.virginia.edu/~cr4bd/4414/S2020/

homeworks
there will be programming assignments

first is due next week

…mostly in C or C++; one in Python

one or two weeks
if two weeks “checkpoint” submission after first week

two week assignments worth more

schedule is aggressive…

3

xv6
some assignments will use xv6, a teaching operating system

simplified OS based on an old Unix version
built by some people at MIT

theoretically actually boots on real 32-bit x86 hardware

…and supports multicore!
(but we’ll run it only single-core, in an emulator)

4

quizzes
there will be online quizzes after each week of lecture

…starting this week (due next Tuesday)

same interface as CS 3330, but no time limit
(haven’t seen it? we’ll talk more on Thursday)

quizzes are open notes, open book, open Internet

5

exams
midterm and final

let us know soon if you can’t make the midterm

final is a combined final on 4 May at 7PM
not during a “normal” final slot

6

late policy
there is a late policy on the website

7

textbook
recommended textbook:
Anderson and Dahlin, Operating Systems: Principles and Practice

no required textbook

alt: Arpaci-Dusseau, Operating Systems: Three Easy Pieces (free
PDFs!)

some topics we’ll cover where this may be primary textbook

alternative: Silberchartz (used in previous semesters)
full version: Operating System Concepts, Ninth Edition

8

cheating: homeworks
don’t

homeworks are individual

no code from prior semesters (other than your own)

no sharing code, pesudocode, detailed descriptions of code

no using code from Internet/etc., with limited exceptions
tiny things solving problems that aren’t point of assignment
…credited where used in your code
e.g. code to split string into array for non-text-parsing assignment
exception: something explicitly referred to by the assignent writeup
in doubt: ask

9

citation
if using small amount of code clearly not point of assignment

e.g. split string into array for non-text-parsing assignment
e.g. filling arrays of pointers from vectors of strings

not sure what counts? ask

then make sure you cite where you got it in your code
should not be other student, etc. — no sharing code

if using code clearly part of major objective of assignment

then don’t
e.g. if you find a shell online, don’t use it solve the shell assignment

10

cheating: quizzes
don’t

quizzes: also individual

don’t share answers

don’t IM people for answers

don’t ask on StackOverflow for answers

11

waitlisted?
if you need this course now to graduate on time, email me with
specifics

please indicate which sections you are able to attend

12

getting help
Piazza

TA and my office hours (will be posted soon)

emailing me

13

history: computer operator

via National Library of Medicine; computer operators operating an Honeywell 800 14

OS definition ambiguity
different exact defintions

‘part of OS’ v. ‘just a program/library’
example: code to allow moving windows on the screen part of the OS?
example: code to support printers is part of the OS?

we’ll not sweat the details — give general, common principles

15

what is an operating system?
software that:

Anderson-Dahlin manages a computer’s resources

Arpaci-Dusseau provides ‘virtual machine’: more convenient than real
machine

16

OS roles
Anderson-Dahlin’s taxonomy of things OS’s do

referee — resource sharing, protection, isolation

illusionist — clean, easy abstractions

glue — common services
storage, window systems, authorization, networking, …

17

OS as abstraction layer
app 1 app 2 app 3

operating system

hardware

18

the virtual machine interface
application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

19

system virtual machines
run entire operating systems

for OS development, portability

interface ≈ hardware interface (but maybe not the real hardware)
aid reusing existing raw hardware-targeted code
different “application programmer”

20

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPus)
no matter number of CPUs
memory allocation functions
no worries about organization of “real” memory
files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPus)
no matter number of CPUs

memory allocation functions
no worries about organization of “real” memory
files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPus)
no matter number of CPUs

memory allocation functions
no worries about organization of “real” memory

files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPus)
no matter number of CPUs
memory allocation functions
no worries about organization of “real” memory

files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

21

The Process
process = thread(s) + address space + …

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

22

the abstract virtual machine
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

23

abstract VM: application view
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating systemthe application’s “machine” is the operating system

no hardware I/O details visible — future-proof

more featureful interfaces than real hardware

24

abstract VM: OS view
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …operating system’s job: translate one interface to another

25

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

26

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

26

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

26

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

26

files → input/output
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

files

27

security and protection
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

segmentation fault

28

goal: protection
run multiple applications, and …

keep them from crashing the OS

keep them from crashing each other

(keep parts of OS from crashing other parts?)

29

mechanism 1: dual-mode operation
processor has two modes: kernel (privileged) and user

some operations require kernel mode

OS controls what runs in kernel mode

30

mechanism 2: address translation

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

31

aside: alternate mechanisms
dual mode operation and address translation are common today

…so we’ll talk about them a lot

not the only ways to implement operating system features
(plausibly not even the most efficient…)

32

problem: OS needs to respond to events
keypress happens?

program using CPU for too long?

…

hardware support for running OS: exception
need hardware support because CPU is running application instructions

33

problem: OS needs to respond to events
keypress happens?

program using CPU for too long?

…

hardware support for running OS: exception
need hardware support because CPU is running application instructions

33

exceptions and dual-mode operation
rule: user code always runs in user mode

rule: only OS code ever runs in kernel mode

on exception: changes from user mode to kernel mode

…and is only mechanism for doing so
how OS controls what runs in kernel mode

34

exception terminology
CS 3330 terms:

interrupt: triggered by external event
timer, keyboard, network, …

fault: triggered by program doing something “bad”
invalid memory access, divide-by-zero, …

traps: triggered by explicit program action
system calls

aborts: something in the hardware broke

35

xv6 exception terms
everything is a called a trap

or sometimes an interrupt

no real distinction in name about kinds

36

real world exception terms
it’s all over the place…

context clues

37

kernel services
allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyboard)

all need privileged instructions!

need to run code in kernel mode

38

hardware mechanism: deliberate exceptions
some instructions exist to trigger exceptions

still works like normal exception
starts executing OS-chosen handler
…in kernel mode

allows program requests privilieged instructions
OS handler decides what program can request
OS handler decides format of requests

39

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

40

the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

41

the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

41

the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

41

aside: is the OS the kernel?
OS = stuff that runs in kernel mode?

OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries + utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is

each piece can be replaced separately…

42

xv6
we will be using an teaching OS called “xv6”

based on Sixth Edition Unix

modified to be multicore and use 32-bit x86 (not PDP-11)

43

xv6 setup/assignment
first assignment — adding two simple xv6 system calls

includes xv6 download instructions

and link to xv6 book

44

xv6 technical requirements
you will need a Linux environment

we will supply one (VM on website), or get your own
(it’s probably possible to use OS X, but you need a cross-compiler and
we don’t have instructions)

…with qemu installed
qemu (for us) = emulator for 32-bit x86 system
Ubuntu/Debian package qemu-system-i386

45

first assignment
get compiled and xv6 working

…toolkit uses an emulator
could run on real hardware or a standard VM, but a lot of details
also, emulator lets you use GDB

46

xv6: what’s included
Unix-like kernel

very small set of syscalls
some less featureful (e.g. exit without exit status)

userspace library
very limited

userspace programs
command line, ls, mkdir, echo, cat, etc.
some self-testing programs

47

xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

48

xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

48

xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

48

xv6 demo

49

xv6 demo

50

write syscall in xv6

user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

53

write syscall in xv6
user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

53

write syscall in xv6: user mode

...
write(1,

"Hello, World!\n",
14);

...

main.c
...
#define SYS_write 16
...
#define T_SYSCALL 64
...

syscall.h / traps.h

(partial, after macro replacement)
.globl write
write:

movl $SYS_write, %eax
int $T_SYSCALL
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (64 in this case) — type of exception
xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention (arguments on stack)

55

write syscall in xv6: user mode

...
write(1,

"Hello, World!\n",
14);

...

main.c
...
#define SYS_write 16
...
#define T_SYSCALL 64
...

syscall.h / traps.h

(partial, after macro replacement)
.globl write
write:

movl $SYS_write, %eax
int $T_SYSCALL
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (64 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention (arguments on stack)

55

write syscall in xv6: user mode

...
write(1,

"Hello, World!\n",
14);

...

main.c
...
#define SYS_write 16
...
#define T_SYSCALL 64
...

syscall.h / traps.h

(partial, after macro replacement)
.globl write
write:

movl $SYS_write, %eax
int $T_SYSCALL
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (64 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention (arguments on stack)

55

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

56

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

56

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

56

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

56

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

56

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

56

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

56

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

con: makes writing system calls safely more complicated
(what if keypress handler runs during system call?)

pro: slow system calls don’t stop timers, keypresses, etc. from working

non-system call exceptions: interrupts disabled

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

57

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

58

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

59

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c
struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

59

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

59

write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

59

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

60

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

60

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

60

write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

60

write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

61

write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

61

write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

61

write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

62

write syscall in xv6
user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

63

write syscall in xv6

user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

64

xv6intro homework
get familiar with xv6 OS

add a new system call: writecount()

returns total number of times write call happened

65

homework steps
system call implementation: sys_writecount

hint in writeup: imitate sys_uptime
need a counter for number of writes

add writecount to several tables/lists
(list of handlers, list of library functions to create, etc.)
recommendation: imitate how other system calls are listed

create a userspace program that calls writecount
recommendation: copy from given programs

repeat, adding setwritecount

66

note on locks
some existing code uses acquire/release

you do not have to do this

only for multiprocessor support

67

68

backup slides

69

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

70

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

70

OS and time multiplexing
starts running instead of normal program via exception

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

71

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

address space = page table base pointer

72

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

73

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

xv6: A’s registers saved by
exception handler
into “trapframe”
on A’s kernel stack

74

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory
xv6: A’s registers saved by
exception handler
into “trapframe”
on A’s kernel stack

74

common goal: hide complexity
hiding complexity

competing applications — failures, malicious applications
text editor shouldn’t need to know if browser is running

varying hardware — diverse and changing interfaces
different keyboard interfaces, disk interfaces, video interfaces, etc.
applications shouldn’t change

75

common goal: hide complexity
hiding complexity

competing applications — failures, malicious applications
text editor shouldn’t need to know if browser is running

varying hardware — diverse and changing interfaces
different keyboard interfaces, disk interfaces, video interfaces, etc.
applications shouldn’t change

75

common goal: for application programmer
write once for lots of hardware

avoid reimplementing common functionality

don’t worry about other programs

76

	logistics
	what is an operating system?
	the process virtual machine concept
	process = thread + address space
	process VM specifics

	address spaces and dual-mode operation
	system calls
	system call sketch

	the Unix design and xv6
	xv6: what is, setup
	xv6: things included

	system calls in xv6
	flow chart for write
	write() walkthrough
	user mode part
	interrupt table and kernel entry
	trap() function
	kernel exit/return

	flow chart (revisited)

	xv6intro homework
	backup slides
	hiding complexity

