
scheduling 2 — FCFS, RR, priority, SRTF

1



last time
xv6 scheduler design

separate scheduler thread
disable interrupts while changing thread states

threads versus processes
thread: part on processor core
xv6: each process has exactly one thread

CPU bursts
scheduling metrics

turnaround time: becomes runnable to becomes not-running/runnable
wait time: turnaround time minus time spent running
throughput: amount of useful work done per unit time
fairness
…other, subjective/tricky to quantify metrics?

2



metrics today
big focus on minimizing mean/total turnaround time

thread becomes ready until thread done being ready

imperfect approximation of interactivity/responsiveness on desktop

question: why imperfect?

3



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

4



scheduling example assumptions
multiple programs become ready at almost the same time

alternately: became ready while previous program was running

…but in some order that we’ll use
e.g. our ready queue looks like a linked list

5



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

6



first-come, first-served
simplest(?) scheduling algorithm

no preemption — run program until it can’t
suitable in cases where no context switch
e.g. not enough memory for two active programs

7



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

wait times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

wait times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

wait times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

wait times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

wait times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

wait times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

wait times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

wait times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

wait times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

wait times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

wait times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

wait times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



FCFS orders
arrival order: A, B, C

A B C
0 10 20 30

wait times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

wait times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 3 (B), 7 (C)

“convoy effect”

9



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

10



round-robin
simplest(?) preemptive scheduling algorithm

run program until either
it can’t run anymore, or
it runs for too long (exceeds “time quantum”)

requires good way of interrupting programs
like xv6’s timer interrupt

requires good way of stopping programs whenever
like xv6’s context switches

11



round robin (RR) (varying order)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

waiting times: (mean=6)
7 (A), 6 (B), 5 (C)
turnaround times: (mean=16.3)
31 (A), 10 (B), 8 (C)

12



round robin (RR) (varying order)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

waiting times: (mean=6)
7 (A), 6 (B), 5 (C)
turnaround times: (mean=16.3)
31 (A), 10 (B), 8 (C)

12



round robin (RR) (varying time quantum)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

waiting times: (mean=7)
7 (A), 6 (B), 8 (C)
turnaround times: (mean=17.3)
31 (A), 10 (B), 11 (C)

13



round robin (RR) (varying time quantum)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

waiting times: (mean=6.7)
7 (A), 7 (B), 6 (C)
turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

waiting times: (mean=7)
7 (A), 6 (B), 8 (C)
turnaround times: (mean=17.3)
31 (A), 10 (B), 11 (C)

13



round robin idea
choose fixed time quantum Q

unanswered question: what to choose

switch to next process in ready queue after time quantum expires

this policy is what xv6 scheduler does
scheduler runs from timer interrupt (or if process not runnable)
finds next runnable process in process table

14



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput

FCFS = RR with infinite quantum
more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround/waiting time?

15



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround/waiting time?

15



aside: context switch overhead
typical context switch: ∼ 0.01 ms to 0.1 ms

but tricky: lot of indirect cost (cache misses)
(above numbers try to include likely indirect costs)

choose time quantum to manage this overhead

current Linux default: between ∼0.75 ms and ∼6 ms
varied based on number of active programs
Linux’s scheduler is more complicated than RR

historically common: 1 ms to 100 ms
1% to 0.1% ovherhead?

16



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround/waiting time?
17



exercise: round robin quantum
if there were no context switch overhead, decreasing the time
quantum (for round robin) would cause mean turnaround time to

.

A. always decrease or stay the same

B. always increase of stay the same

C. increase or decrease or stay the same

D. something else?

18



increase mean turnaround time
A: 1 unit CPU burst
B: 1 unit

Q = 1

Q = 1/2

A B
mean turnaround time =
(1 + 2) ÷ 2 = 1.5

mean turnaround time =
(1.5 + 2) ÷ 2 = 1.75

19



decrease mean turnaround time
A: 10 unit CPU burst
B: 1 unit

Q = 10

Q = 5

A B
mean turnaround time =
(10 + 11) ÷ 2 = 10.5

mean turnaround time =
(6 + 11) ÷ 2 = 8.5

20



stay the same
A: 1 unit CPU burst
B: 1 unit

Q = 10

Q = 1

A B

21



FCFS and order
earlier we saw that with FCFS, arrival order mattered

big changes in turnaround/waiting time

let’s use that insight to see how to optimize mean/total turnaround
times

22



FCFS ordersarrival order: A, B, C
A B C

0 10 20 30
waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: C, B, A
C B A

0 10 20 30
waiting times: (mean=3.3)
7 (A), 3 (B), 0 (C)
turnaround times: (mean=13.7)
31 (A), 7 (B), 3 (C)

arrival order: B, C, A
B C A

0 10 20 30
waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

23



order and turnaround time
best total/mean turnaround time = run shortest CPU burst first

worst total/mean turnaround time = run longest CPU burst first

intuition (1): “race to go to sleep”

intuition (2): minimize time with two threads waiting

later: we’ll use this result to make a scheduler that minimizes mean
turnaround time

24



order and turnaround time
best total/mean turnaround time = run shortest CPU burst first

worst total/mean turnaround time = run longest CPU burst first

intuition (1): “race to go to sleep”

intuition (2): minimize time with two threads waiting

later: we’ll use this result to make a scheduler that minimizes mean
turnaround time

24



diversion: some users are more equal
shells more important than big computation?

i.e. programs with short CPU bursts

faculty more important than students?

scheduling algorithm: schedule shells/faculty programs first

25



priority scheduling
priority 15
…
priority 3
priority 2
priority 1
priority 0

ready queues for each priority level

process A process B

process C
process D process E process F

choose process from ready queue for highest priority
within each priority, use some other scheduling (e.g. round-robin)

could have each process have unique priority

26



priority scheduling and preemption
priority scheduling can be preemptive

i.e. higher priority program comes along — stop whatever else was
running

27



exercise: priority scheduling (1)
Suppose there are two processes:

thread A
highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take thread Z complete?

28



exercise: priority scheduling (2)
Suppose there are three processes:
thread A

highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread B
second-highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take thread Z complete?
29



starvation
programs can get “starved” of resources

never get those resources because of higher priority

big reason to have a ‘fairness’ metric

something almost all definitions of fairness agree on

30



minimizing turnaround time
recall: first-come, first-served best order:
had shortest CPU bursts first

→ scheduling algorithm: ‘shortest job first’ (SJF)

= same as priority where CPU burst length determines priority

…but without preemption for now
priority = job length doesn’t quite work with preemption
(preview: need priority = remaining time)

31



a practical problem
so we want to run the shortest CPU burst first

how do I tell which thread that is?

we’ll deal with this problem later

…kinda

32



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

33



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

33



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

33



preemption: definition
stopping a running program while it’s still runnable

example: FCFS did not do preemption. RR did.

what we need to solve the problem:
‘accidentally’ ran long task, now need room for short one

34



adding preemption (1)
what if a long job is running, then a short job interrupts it?

short job will wait for too long

solution is preemption — reschedule when new job arrives
new job is shorter — run now!

35



adding preemption (2)
what if a long job is almost done running, then a medium job
interrupts it?

recall: priority = job length
long job waits for medium job
…for longer than it would take to finish
worse than letting long job finish

solution: priority = remaining time

called shortest remaining time first (SRTF)
prioritize by what’s left, not the total

36



adding preemption (2)
what if a long job is almost done running, then a medium job
interrupts it?

recall: priority = job length
long job waits for medium job
…for longer than it would take to finish
worse than letting long job finish

solution: priority = remaining time

called shortest remaining time first (SRTF)
prioritize by what’s left, not the total

36



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

37



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

37



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

37



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

37



SRTF, SJF are optimal (for turnaround time)
SJF minimizes turnaround time/waiting time
…if you disallow preemption/leaving CPU deliberately idle

SRTF minimizes turnaround time/waiting time
…if you ignore context switch costs

38



aside on names
we’ll use:

SRTF for preemptive algorithm with remaining time

SJF for non-preemptive with total time=remaining time

might see different naming elsewhere/in books, sorry…

39



knowing job (CPU burst) lengths
seems hard

sometimes you can ask
common in batch job scheduling systems

and maybe you’ll get accurate answers, even

40



the SRTF problem
want to know CPU burst length
well, how does one figure that out?

e.g. not any of these fields
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

41



the SRTF problem
want to know CPU burst length
well, how does one figure that out?
e.g. not any of these fields

uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

41



predicting the future
worst case: need to run the program to figure it out

but heuristics can figure it out
(read: often works, but no gaurentee)

key observation: CPU bursts now are like CPU bursts later
intuition: interactive program with lots of I/O tends to stay interactive
intuition: CPU-heavy program is going to keep using CPU

42



multi-level feedback queues
classic strategy based on priority scheduling

combines update time estimates and running shorter times first

key idea: current priority ≈ current time estimate

small(ish) number of time estimate “buckets”

43



multi-level feedback queues: setup
priority 3
0–1 ms timeslice
priority 2
1–10 ms timeslice
priority 1
10–20 ms timeslice
priority 0
20+ ms timeslice

thread A thread B

thread C

thread D thread E thread F

goal: place processes at priority level based on CPU burst time
just a few priority levels — can’t guess CPU burst precisely anyways

dynamically adjust priorities based on observed CPU burst times
priority level → allowed/expected time quantum

use more than 1ms at priority 3? — you shouldn’t be there
use less than 1ms at priority 0? — you shouldn’t be there

44



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

45



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

45



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

45



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

45



multi-level feedback queue idea
higher priority = shorter time quantum (before interrupted)

adjust priority and timeslice based on last timeslice

intuition: thread always uses same CPU burst length?
ends up at “right” priority

rises up to queue with quantum just shorter than it’s burst
then goes down to next queue, then back up, then down, then up, etc.

46


	last time
	FCFS and RR
	FCFS and examples with orders
	RR and examples with orders
	FCFS and round-robin continuum
	aside: real context switch overhead
	context switch overhead
	exercise: RR and turnaround times
	FCFS response time tradeoff

	priority
	exercise
	starvation
	SJF
	SRTF
	getting time estimates?

	multilevel feedback queues (MLFQ)
	introduction


