
scheduling 3

1



Changelog
Changes not seen in first lecture:

4 Feb 2020: MLFQ example: number priorities so largest number is
highest priority

4 Feb 2020: lottery scheduler assignment: replace “how long
processes run” with “how often processes scheduled’ to better
match assignment writeup

4 Feb 2020: CFS: A’s long sleep: show overriding of natural virtual
time with strikeout

4 Feb 2020: added CFS exercise explanation slides

1



last time
first-come first-served and round robin
round robin time quantum

low = fair but bad throughput
high = unfair (order) but good throughput

priority scheduling
run some threads first, no matter what
often implies starvation

shortest remaining time first (SRTF): mean turnaround time
started multi-level feedback queues

approximate SRTF via priority buckets
priority =⇒ CPU burst estimate + time quantum
exceeds time quantum? adjust priority

2



multi-level feedback queues
classic strategy based on priority scheduling

combines update time estimates and running shorter times first

key idea: current priority ≈ current time estimate

small(ish) number of time estimate “buckets”

3



multi-level feedback queues: setup
priority 3
0–1 ms quantum
priority 2
1–10 ms quantum
priority 1
10–20 ms quantum
priority 0
20+ ms quantum

thread A thread B

thread C

thread D thread E thread F

goal: place processes at priority level based on CPU burst time
just a few priority levels — can’t guess CPU burst precisely anyways

dynamically adjust priorities based on observed CPU burst times
priority level → allowed/expected time quantum

use more than 1ms at priority 3? — you shouldn’t be there
use less than 1ms at priority 0? — you shouldn’t be there

4



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

5



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

5



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

5



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

5



multi-level feedback queue idea
higher priority = shorter time quantum (before interrupted)

adjust priority and timeslice based on last timeslice

intuition: thread always uses same CPU burst length?
ends up at “right” priority

rises up to queue with quantum just shorter than it’s burst
then goes down to next queue, then back up, then down, then up, etc.

6



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum oscillation: too big for prio 2 / too small for prio 3

7



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum oscillation: too big for prio 2 / too small for prio 3

7



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum oscillation: too big for prio 2 / too small for prio 3

7



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum

oscillation: too big for prio 2 / too small for prio 3

7



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum

oscillation: too big for prio 2 / too small for prio 3

7



cheating multi-level feedback queuing
algorithm: don’t use entire time quantum? priority increases

getting all the CPU:
while (true) {
useCpuForALittleLessThanMinimumTimeQuantum();
yieldCpu();

}

8



multi-level feedback queuing and fairness
suppose we are running several programs:

A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

9



multi-level feedback queuing and fairness
suppose we are running several programs:

A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

9



MLFQ variations
version of MLFQ I described is in Anderson-Dahlin

problems:

starvation
worse than with real SRTF — based on guess, not real remaining time

oscillation not great for predictability

10



variation to prevent starvation
Apraci-Dusseau presents version of MLFQ w/o starvation

two changes:

don’t increase priority when whole quantum not used
instead keep the same — more stable

periodically increase priority of all threads
allow compute-heavy threads to run a little
still deals with thread’s behavior changing over time
replaces finer-grained upward adjustments

11



FreeBSD scheduler
current default FreeBSD scheduler based on MLFQ idea

…but: time quantums don’t depend on priority

computes interactivity score ∼ I/O wait
I/O wait + runtime

note: deliberately not estimating remaining time

(using “recent” history of thread)

thread priorities set based on interactivity score

12



conflicting goals for interactivity heuristics
efficiency

avoid scanning all threads every few milliseconds

figure out new programs quickly

adapt to changes/spikes in program behavior

avoid pathological behavior
starvation, hanging when new compute-intensive program starts, etc.

exercise: how to handle each of these well?
what does MLFQ do well?

13



fair scheduling
what is the fairest scheduling we can do?

intuition: every thread has an equal chance to be chosen

14



random scheduling algorithm
“fair” scheduling algorithm: choose uniformly at random

good for “fairness”

bad for response time

bad for predictability

15



proportional share
maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

16



proportional share
maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

16



lottery scheduling

A
100 tickets

B
200 tickets

C
100 tickets

every thread has a certain number of lottery tickets:

scheduling = lottery among ready threads:

0 100 200 300 400
choose random number in this range to find winner

17



simulating priority with lottery
A (high priority)

1M tickets
B (medium priority)

1K tickets
C (low priority)

1 tickets

very close to strict priority

…or to SRTF if priorities are set/adjusted right

18



simulating priority with lottery
A (high priority)

1M tickets
B (medium priority)

1K tickets
C (low priority)

1 tickets

very close to strict priority

…or to SRTF if priorities are set/adjusted right

18



lottery scheduling assignment
assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how often processes scheduled (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

19



lottery scheduling assignment
assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how often processes scheduled (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

19



is lottery scheduling actually good?
seriously proposed by academics in 1994 (Waldspurger and Weihl,
OSDI’94)

including ways of making it efficient
making preemption decisions (other than time slice ending)
if processes don’t use full time slice
handling non-CPU-like resources
…

elegant mecahnism that can implement a variety of policies

but there are some problems…

20



exercise
thread A: 1 ticket, always runnable

thread B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

21



exercise
thread A: 1 ticket, always runnable

thread B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

approx. 7%

21



A runs w/in 10 times…
0 times 34%
1 time 39%
2 time 19%
3 time 6%
4 time 1%
5+ time <1%

(binomial distribution…)

22



aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

23



aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

23



aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

23



aside: measuring fairness (2)
one way: max-min fairness

choose schedule that maximizes the minimum resource given to
anyone

most fair least fair

24



aside: measuring fairness (2)
one way: max-min fairness

choose schedule that maximizes the minimum resource given to
anyone

most fair least fair

24



lottery scheduler and interactivity
suppose two processes A, B, each have same # of tickets

process A is CPU-bound,

process B does lots of I/O (but has enough work to use 50% of the CPU)

lottery scheduler: run equally when both can run

result: B runs less than A
50% when both runnable

is this fair?
yes, it evenly splits up time when both programs runnable
no, the programs don’t get equal CPU time

25



lottery scheduler and interactivity
suppose two processes A, B, each have same # of tickets

process A is CPU-bound,

process B does lots of I/O (but has enough work to use 50% of the CPU)

lottery scheduler: run equally when both can run

result: B runs less than A
50% when both runnable

is this fair?
yes, it evenly splits up time when both programs runnable
no, the programs don’t get equal CPU time

25



recall: proportional share randomness
lottery scheduler: variance was a problem

consistent over the long-term
inconsistent over the short-term

want something more like weighted round-robin
run one, then the other
but run some things more often (depending on weight/# tickets)

26



deterministic proportional share scheduler
Linux’s scheduler is a deterministic proportional share scheduler

…which gives processes credit when not runnable

27



Linux’s Completely Fair Scheduler (CFS)
Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

28



Linux’s Completely Fair Scheduler (CFS)
Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

29



CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

30



CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

30



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

31



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

31



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

31



what about threads waiting for I/O, …?
should be advantage for processes not using the CPU as much

haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

32



what about threads waiting for I/O, …?
should be advantage for processes not using the CPU as much

haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

32



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

33



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

33



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

33



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

33



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

34



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

34



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

34



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

34



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

34



handling proportional sharing
solution: multiply used time by weight

e.g. 1 ms of CPU time costs process 2 ms of virtual time

higher weight =⇒ process less favored to run

35



CFS quantum lengths goals
first priority: constrain minimum quantum length (default: 0.75ms)

avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

36



CFS quantum lengths goals
first priority: constrain minimum quantum length (default: 0.75ms)

avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

36



CFS: avoiding excessive context switching
conflicting goals:

schedule newly ready tasks immediately
(assuming less virtual time than current task)

avoid excessive context switches

CFS rule:
if virtual time of new task < current virtual time by threshold

default threshold: 1 ms

(otherwise, wait until quantum is done)

37



CFS exercise
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

C: …(uses CPU forever) …

suppose programs A, B, C with alternating CPU + I/O as above

with CFS (and equal weights), about what portion of CPU does
program A get?

your answer might depend on scheduler parameters

recall: limit on ‘advantage’ of programs waking from sleep

38



CFS exercise: maximum time for A
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

A running alone: A runs 2/5ths of the time

A, B, C sharing fairly: each runs 1/3rd of the time

result: A runs at most 1/3rd of the time…

unless B somehow doesn’t get its full share because of I/O
(because of being interrupted by A too much?)

39



CFS exercise: A disadvantage from sleep
A

A(not ready): 10.0 ms
B: 10.0 ms
C: 11.0 ms

B

A(not ready): 10.0 ms
B(not ready): 11.0 ms
C: 11.0 ms

C

A(not ready): 10.0 ms
B: 11.0 ms
C: 12.5 ms

B

A(not ready): 10.0 ms 10.5 ms
B: 11.5 ms
C: 12.5 ms

A

if scheduler configured to limit advantage
of newly ready threads enough:
A might ‘lose’ some virtual time

because it waits for I/O “too long”
40



CFS exercise: A interrupted by B?
A alone: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

A with B?: A B
∼1 ms A B

∼1 ms A wait for I/O:
∼3 ms

combined with A losing ‘banked’ virtual time (so B can interrupt it
sometimes),
could prevent A from running more
A interrupted by B a bunch sometimes…?

depends on B’s virtual time, etc.

might not start I/O as often
might not be able to run 1/3rd of the time

assuming I/O is like disk, not keyboard

e.g. sometimes 2/(2 + 2 + 3) ≈ 28% of CPU
41



other CFS parts
dealing with multiple CPUs

handling groups of related tasks

special ‘idle’ or ‘batch’ task settings

…

42



CFS versus others
very similar to stride scheduling

presented as a deterministic version of lottery scheduling
Waldspurger and Weihl, “Stride Scheduling: Deterministic
Proportional-Share Resource Management” (1995, same authors as
lottery scheduling)

very similar to weighted fair queuing
used to schedule network traffic
Demers, Keshav, and Shenker, “Analysis and Simulation of a Fair
Queuing Algorithm” (1989)

43



a note on multiprocessors
what about multicore?

extra considerations:

want two processors to schedule without waiting for each other

want to keep process on same processor (better for cache)

what process to preempt when three+ choices?

44



4.4BSD scheduler
4.4BSD / FreeBSD pre-2003 scheduler was a variation on MLFQ

64 priority levels, 100 ms quantum

same quantum at every priority

priorities adjusted periodically
in retrospect not good for performance — iterate through all threads
part of why FreeBSD stopped using this scheduler

priority of threads that spent a lot of time waiting for I/O increased

priority of threads that used a lot of CPU time decreased

45



real-time
so far: “best effort” scheduling

best possible (by some metrics) given some work

alternate model: need gaurnetees

deadlines imposed by real-world
process audio with 1ms delay
computer-controlled cutting machines (stop motor at right time)
car brake+engine control computer
…

46



real time example: CPU + deadlines

CPU needed

ready deadline

CPU needed

ready deadline

CPU needed

ready deadline

47



example with RR
ready deadline

ready deadline

ready deadline

missed deadline!

48



earliest deadline first
ready deadline

ready deadline

ready deadline

49



impossible deadlines
ready deadline

ready deadline

ready deadline

no way to meet all deadlines!

50



admission control
given worst-case runtimes, start times, deadlines, scheduling
algorithm,…

figure out whether it’s possible to gaurentee meeting deadlines
details on how — not this course (probably)

if not, then
change something so they can?
don’t ship that device?
tell someone at least?

51



earliest deadline first and…
earliest deadline first does not (even when deadlines met)

minimize response time
maximize throughput
maximize fairness

exercise: give an example

52



other real-time schedulers
typical real time systems: periodic tasks with deadlines

“rate monotonic”

commonly approximate EDF with lower period = higher priority
easier to implement than true EDF

well-known method to determine if schedule is admissible
= won’t exceed deadline (under some assumptions)

53


	multilevel feedback queues (MLFQ)
	introduction
	example
	cheating
	unfairness
	variations
	heuristic balancing act?

	fairness goals: proportional share
	intuitive fairness
	proportional share
	lottery scheduling
	measuring fairness
	better than lottery: motivating CFS

	Linux's completely fair scheduler (CFS)
	handling I/O wait
	example: finishing early?
	example: long sleep
	making proportional
	adjusting time quantums
	CFS exercise
	misc CFS features
	versus other schedulers


	backup slides
	a note on multiple processors
	4.4BSD scheduler

	real-time scheduling

