threads 1

which scheduler should | choose?

| care about...
CPU throughput: first-come first-serve

average response time: SRTF approximation

|/O throughput: SRTF approximation

fairness — medium-term CPU usage: something like Linux CFS
fairness — wait time: something like RR

real-world deadlines: earliest deadline first or similar

favoring certain users: strict priority

which scheduler should | choose?

| care about...
CPU throughput: first-come first-serve

average response time: SRTF approximation

|/O throughput: SRTF approximation

fairness — medium-term CPU usage: something like Linux CFS
fairness — wait time: something like RR

real-world deadlines: earliest deadline first or similar

favoring certain users: strict priority

why threads?

concurrency: different things happening at once

one thread per user of web server?
one thread per page in web browser?
one thread to play audio, one to read keyboard, ..7

parallelism: do same thing with more resources
multiple processors to speed-up simulation (life assignment)

aside: alternate threading models

we'll talk about kernel threads

OS scheduler deals directly with threads

alternate idea: library code handles threads
kernel doesn’t know about threads w/in process
hierarchy of schedulers: one for processes, one within each process

not currently common model — awkward with multicore

thread versus process state

thread state — kept in thread control block
registers (including stack pointer, program counter)
scheduling state (runnable, waiting, ...)
other information?

process state — kept in process control block
address space (memory layout, heap location, ...
open files
process id
list of thread control blocks

Linux idea: task_struct
Linux model: single “task” structure = thread

pointers to address space, open file list, etc.

pointers can be shared
e.g. shared open files: open fd 4 in one task — all sharing can use fd 4

fork ()-like system call “clone”: choose what to share
clone(0, ...) — similar to fork()
clone(CLONE_FILES, ...) — like fork(), but sharing open files
clone(CLONE_VM, new_stack_pointer, ...) — like fork(),
but sharing address space

Linux idea: task_struct
Linux model: single “task” structure = thread

pointers to address space, open file list, etc.

pointers can be shared
e.g. shared open files: open fd 4 in one task — all sharing can use fd 4

fork ()-like system call “clone”: choose what to share
clone(0, ...) — similar to fork()
clone(CLONE_FILES, ...) — like fork(), but sharing open files
clone(CLONE_VM, new_stack_pointer, ...) — like fork(),
but sharing address space

advantage: no special logic for threads (mostly)
two threads in same process = tasks sharing everything possible

pthread__create

void *ComputePi(void *argument) { ... 1}
void *PrintClassList(void *argument) { ... 1}
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);

pthread_create(&list_thread, NULL, PrintClasslList, NULL);
... /* more code */

main()

S

pthread_create

e ComputePi
pthread_create

? PrintClassList

S

pthread__create

void *ComputePi(void *argument) { ... }

void *PrintClassList(void *argument) { ... }

int main() {
pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}
pthread_create arguments:

thread identifier

function to run
thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument

pthread__create

void *ComputePi(void *argument) { ... }

void *PrintClassList(void *argument) { ... }

int main() {
pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}
pthread_create arguments:

thread identifier

function to run
thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument

pthread__create

void *ComputePi(void *argument) { ... }

void *PrintClassList(void *argument) { ... }

int main() {
pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}
pthread_create arguments:

thread identifier

function to run
thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument

pthread__create

void *ComputePi(void *argument) { ... }

void *PrintClassList(void *argument) { ... }

int main() {
pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}
pthread_create arguments:

thread identifier

function to run
thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument

a threading race

#include <pthread.h>

#include <stdio.h>

void *print_message(void *ignored_argument) {
printf("In the thread\n");
return NULL;

¥

int main() {
printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

d race

returning from main exits the entire process (all its threads)
same as calling exit; not like other threads

race: main's return 0 or print_message's printf first?

> time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

10

fixing the race (version 1)

#include <pthread.h>

#include <stdio.h>

void *print_message(void *ignored_argument) {
printf("In the thread\n");
return NULL;

int main() {
printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
pthread_join(the_thread, NULL); /* WAIT FOR THREAD */
return 0;

11

fixing the race (version 2; not recommended)

#include <pthread.h>

#include <stdio.h>

void *print_message(void *ignored_argument) {
printf("In the thread\n");
return NULL;

int main() {
printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
pthread_exit(NULL);

12

pthread__join, pthread__exit

pthread_join: wait for thread, returns its return value

like waitpid, but for a thread
return value is pointer to anything

pthread_exit: exit current thread, returning a value

like exit or returning from main, but for a single thread
same effect as returning from function passed to pthread_create

13

sum example (only globals)

int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {
int sum = 0;
for (int i = 0; i < 512; ++1)
sum += values[i];
results[0] = sum;
return NULL;

void *sum_back(void *ignored_argument) {
int sum = 0;
for (int i = 512; i < 1024; ++1)
sum += values[i];
results[1] = sum;
return NULL;

int sum_all() {
pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(&sum_front_thread, NULL);
pthread_join(&sum_back_thread, NULL);
return results[0] + results[1l];

14

sum example (only globals)

int values[1024];

int results[2]; values, results: global variables — shared
void *sum_front(void *ignored

int sum = 0;

for (int i = 0; i < 512; ++17)
sum += values[i];

results[0] = sum;

return NULL;

void *sum_back(void *ignored_argument) {
int sum = 0;
for (int i = 512; i < 1024; ++1)
sum += values[i];
results[1] = sum;
return NULL;

int sum_all() {
pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(&sum_front_thread, NULL);
pthread_join(&sum_back_thread, NULL);
return results[0] + results[1l];

sum example (only globals)

int values[1024]; two different functions
int results[2];

void *sum_front(void *| happen to be the same except for some numbers
int sum = 0;

for (int i = 0; i < 512; ++1)
sum += values[i];

results[@] = sum;

return NULL;

void *sum_back(void *ignored_argument) {
int sum = 0;
for (int i = 512; i < 1024; ++1)
sum += values[i];
results[1] = sum;
return NULL;
}
int sum_all() {
pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(&sum_front_thread, NULL);
pthread_join(&sum_back_thread, NULL);
return results[0] + results[1l];

sum

values returned from threads

:2’; valug via global array instead of return value
void *sunl (partly to illustrate that memory is shared,
P (| partly because this pattern works when we don't join (later))

SUM +— Vatues[T1],
results[0] = sum;
return NULL;

void *sum_back(void *ignored_argument) {
int sum = 0;
for (int i = 512; i < 1024; ++1)
sum += values[i];
results[1] = sum;
return NULL;

int sum_all() {
pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(&sum_front_thread, NULL);
pthread_join(&sum_back_thread, NULL);
return results[0] + results[1];

14

thread__sum memory layout

Used by OS

main thread stack

sum_front_thread stack

sum_back_thread stack

Heap / other dynamic

Code / Data

OXFFFF FFFF FFFF FFFF
OxFFFF 8000 0000 0000

OXTF..

values, results (global)

Ox0000 0000 0040 0000

15

thread__sum memory layout

Used by OS

main thread stack

sum_front_thread stack

OXFFFF FFFF FFFF FFFF

OxFFFF 8000 0000 0000

OXTF..

TCB for sum_front thread

PC

sum_back_thread stack

Heap / other dynamic

Code / Data

registers

TCB for sum__back thread
PC

values, results (global)

registers

sum__back

sum__front
OX00VY DLVUL 0040 0000

15

sum example (to global, with thread IDs)

int values[1024];
int results[2];
void *sum_thread(void *argument) {
int id = (int) argument;
int sum = 0;
for (int i = 4d * 512; i < (id + 1) * 512; ++i) {
sum += values[i];
}

results[id] = sum;
return NULL;

int sum_all() {
pthread_t thread[2];
for (int i = 0; i < 2; ++i) {
pthread_create(&threads[i], NULL, sum_thread, (void *) 1i);
1

for (int i = 0; i < 2; ++1)

pthread_join(threads[i], NULL);
return results[0] + results[1];

16

sum example (to global, with thread IDs)

int values[1024];

int results[2]; values, results: global variables — shared
void *sum_thread(void *argumer

int

7 U

int id = (int) argument;

int sum = 0;

for (int i = 4d * 512; i < (id + 1) * 512; ++i) {
sum += values[i];

}

results[id] = sum;
return NULL;

sum_all() {

pthread_t thread[2];

for (int i = 0; i < 2; ++1) {

) pthread_create(&threads[i], NULL, sum_thread, (void *) 1i);

for (int i = 0; i < 2; ++1)

pthread_join(threads[i], NULL);
return results[0] + results[1];

16

sum example (info struct)

int values[1024];
struct ThreadInfo {

s

int start, end, result;

void *sum_thread(void *argument) {

int

ThreadInfo *my_info = (ThreadInfo *) argument;

int sum = 0;

for (int i = my_info->start; i < my_info->end; ++i) {
sum += values[i];

}

my_info->result = sum;
return NULL;

sum_all() {
pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {
info[i].start = i*512; dinfo[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);
3
for (int i = 0; i < 2; ++1)
pthread_join(threads[i], NULL);
return info[0].result + info[l].result;

17

sum example (info struct)

int

struct ThreadInfo

s

values[1024]; | yalues: global variable — shared

int start, end, result;

void *sum_thread(void *argument) {

int

ThreadInfo *my_info = (ThreadInfo *) argument;

int sum = 0;

for (int i = my_info->start; i < my_info->end; ++i) {
sum += values[i];

}

my_info->result = sum;
return NULL;

sum_all() {
pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {
info[i].start = i*512; dinfo[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);
3
for (int i = 0; i < 2; ++1)
pthread_join(threads[i], NULL);
return info[0].result + info[l].result;

17

sum example (info struct)

int

values[1024];

struct ThreadInfo {

s

int start, end, result;

void *sum_thread(void *argument) {

int

ThreadInfo *my_info =

(ThreadInfo *) argument:

int sum = 0;

for (int i = my_info->
sum += values[i];

}

my_info: pointer to sum_all's stack
only okay because sum_all waits!

my_info->result = sum;
return NULL;

sum_all() {

pthread_t thread[2]; ThreadInfo info[2];

for (int i = 0; i < 2;

++1) {

info[i].start = i*512; dinfo[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

3

for (int i = 0; i < 2;

++7)

pthread_join(threads[i], NULL);
return info[0].result + info[l].result;

sum example (info struct)

int values[1024];
struct ThreadInfo {

s

int start, end, result;

void *sum_thread(void *argument) {

int

ThreadInfo *my_info = (ThreadInfo *) argument;

int sum = 0;

for (int i = my_info->start; i < my_info->end; ++i) {
sum += values[i];

}

my_info->result = sum;
return NULL;

sum_all() {
pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {
info[i].start = i*512; dinfo[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);
3
for (int i = 0; i < 2; ++1)
pthread_join(threads[i], NULL);
return info[0].result + info[l].result;

17

thread_sum memory layout (info struct)

Used by OS

——mrai—thread-stack——

threads[0] stack

threads[1] stack

Heap / other dynamic

Code / Data

OXFFFF FFFF FFFF FFFF
OxFFFF 8000 0000 0000

OXTF...

info array
my__info j
my__info

values (global)

Ox0000 0000 0040 0000

18

sum example (to main stack)

struct ThreadInfo { int *values; int start; dint end; int result };
void *sum_thread(void *argument) {
ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {
sum += my_info->values[i];
}

my_info->result = sum;
return NULL;

int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];

for (int i = 0; i < 2; ++1i) {
info[i].values = values; info[i].start = i*512; info[i]l.end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}

for (int i = 0; i < 2; ++1)
pthread_join(threads[i], NULL);

return info[0].result + info[l].result;

19

sum example (to main stack)

struct ThreadInfo { [int *values; int start; dint end; int result };
void *sum_thread(void *argument) {
ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {
sum += my_info->values[i];
}

my_info->result = sum;
return NULL;

int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];

for (int i = 0; i < 2; ++i) {
info[i].values = values; info[i].start = i*512; info[i]l.end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}

for (int i = 0; i < 2; ++1)
pthread_join(threads[i], NULL);

return info[0].result + info[l].result;

19

sum example (to main stack)

struct ThreadInfo { int *values; int start; dint end; int result };
void *sum_thread(void *argument) {
ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {
sum += my_info->values[i];
}

my_info->result = sum;
return NULL;

int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];

for (int i = 0; i < 2; ++1i) {
info[i].values = values; info[i].start = i*512; info[i]l.end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}

for (int i = 0; i < 2; ++1)
pthread_join(threads[i], NULL);

return info[0].result + info[l].result;

19

sum example (to main stack)

struct ThreadInfo { int *values; int start; dint end; int result };
void *sum_thread(void *argument) {
ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {
sum += my_info->values[i];
}

my_info->result = sum;
return NULL;

int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];

for (int i = 0; i < 2; ++1i) {
info[i].values = values; info[i].start = i*512; info[i]l.end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}

for (int i = 0; i < 2; ++1)
pthread_join(threads[i], NULL);

return info[0].result + info[l].result;

19

program memory (to main stack)

Used by OS

sum_front_thread stack

sum_back_thread stack

Heap / other dynamic
Code / Data

OXFFFF FFFF FFFF FFFF
OxFFFF 8000 0000 0000

T array == values (stack? heap?)

my__info j

my.__info

Ox0000 0000 0040 0000

20

sum example (on heap)

struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result !
void *sum_thread(void *argument) {

}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {
info[i].values = values; info[i].start = i*512; info[i]l.end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

return info;

}

void finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++1)
pthread_join(info[i].thread, NULL);
int result = 1info[0].result + info[l].result;
delete[] 1info;
return result;

21

sum example (on heap)

struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result !
void *sum_thread(void *argument) {

}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = hew ThreadInfo[2];
for (int i = 0; i < 2; ++i) {
info[i].values = values; info[i].start = i*512; info[i]l.end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

return info;

}

void finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++1)
pthread_join(info[i].thread, NULL);
int result = 1info[0].result + info[l].result;
delete[] 1info;
return result;

21

sum example (on heap)

struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result |
void *sum_thread(void *argument) {

}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {
info[i].values = values; info[i].start = i*512; info[i]l.end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

return info;

}

void finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++17)
pthread_join(info[i].thread, NULL);
int result = 1info[0].result + info[l].result;
delete[] 1info;
return result;

21

thread_sum memory (heap version)

Used by OS

main thread stack

sum_front_thread stack

sum_back_thread stack

—Heap——otherdyrarmie—

Code / Data

OXFFFF FFFF FFFF FFFF

OxFFFF 8000 0000 0000

OXTF..

my__info

my.__info

info array === values (stack? heap?)

Ox0000 0000 0040 0000

22

what’s wrong with this?

/* omitted: headers, using statements */

void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

¥

int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, create_string, NULL);
string *string_ptr;
pthread_join(the_thread, &string_ptr);
cout << "string is " << *string_ptr;

23

program memaory

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic

Code / Data

OxFFFF FFFF FFFF FFFF
OxFFFF 8000 0000 0000

OXTF..

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

..stacks deallocated when
threads exit/are joined

Ox0000 0000 0040 0000

24

program memaory

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic

Code / Data

OxFFFF FFFF FFFF FFFF
OxFFFF 8000 0000 0000

OXTF..

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

..stacks deallocated when
threads exit/are joined

Ox0000 0000 0040 0000

24

thread resources

to create a thread, allocate:

new stack (how big??77?)

thread control block

deallocated when ...

25

thread resources
to create a thread, allocate:
new stack (how big??77?)

thread control block

deallocated when ...

can deallocate stack when thread exits

but need to allow collecting return value
same problem as for processes and waitpid

25

pthread__detach

void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

int

pthread_t show_progress_thread;

pthread_create(&show_progress_thread, NULL, show_progress, NULL]

/* instead of keeping pthread_t around to join thread later:

pthread_detach(show_progress_thread) ;

main() {
spawn_show_progress_thread() ;
do_other_stuff();

detach = don’t care about return value, etc.
system will deallocate when thread terminates

*/

26

starting threads detached

void *show_progress(void * ...) { ... }

void spawn_show_progress_thread() {
pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED) ;
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);

pthread_attr_destroy(&attrs);

27

setting stack sizes

void *show_progress(void * ...) { ... }

void spawn_show_progress_thread() {
pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);

28

a note on error checking

from pthread_create manpage:

ERRORS
EAGAIN

EINVAL

EPERM

Insufficient resources to create another thread, or a system-imposed limit on the number of
threads was encountered. The latter case may occur in two ways: the RLIMIT_NPROC soft resource
limit (set wvia setrlimit(2)), which 1limits the number of process for a real user ID, was
reached; or the kernel's system-wide limit on the number of threads, proc/sys/kernel/threads-
max, was reached.

Invalid settings in attr.

No permission to set the scheduling policy and parameters specified in attr.

special constants for return value

same pattern for many other pthreads functions

will often omit error checking in slides for brevity

29

error checking pthread__create

int error = pthread_create(...);
if (error != 0) {

/* print some error message */
+

30

the correctness problem

schedulers introduce non-determinism

scheduler might run threads in any order
scheduler can switch threads at any time

worse with threads on multiple cores

cores not precisely synchronized (stalling for caches, etc., etc.)
different cores happen in different order each time

allows for “race condition” bugs
outcome depends on whether one thread can ‘race’ ahead of another

..to be avoided by synchronization constructs
what we'll talk about for a while...

31

example application: ATM server
commands: withdraw, deposit

one correctness goal: don't lose money

32

ATM server

(pseudocode)

ServerLoop() {
while (true) {
ReceiveRequest (&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {
Deposit(accountNumber, amount);
} else
+
}
Deposit(accountNumber, amount) {
account = GetAccount(accountId);
account—>balance += amount;
SaveAccountUpdates(account);

33

a threaded server?

Deposit(accountNumber, amount) {
account = GetAccount(accountId);
account—>balance += amount;
SaveAccountUpdates (account);

}

maybe GetAccount/SaveAccountUpdates can be slow?
read /write disk sometimes? contact another server sometimes?

maybe lots of requests to process?
maybe real logic has more checks than Deposit()

all reasons to handle multiple requests at once

— many threads all running the server loop

34

multiple threads

main() {
for (int i = 0; i < NumberOfThreads; ++i) {
pthread_create(&server_loop_threads[i], NULL,
ServerlLoop, NULL);

}

ServerlLoop() {
while (true) {
ReceiveRequest (&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {
Deposit(accountNumber, amount);
} else .

35

the lost write

account—>balance += amount; (in two threads, same account)

Thread A Thread B

mov account—>balance, %rax
add amount, %rax

context switch
mov account—>balance, %rax

add amount, %rax
context switch
mov %rax, account—>balance

context switch
mov %rax, account—>balance

the lost write

account—>balance += amount; (in two threads, same account)

Thread A Thread B

mov account—>balance, %rax
add amount, %rax

context switch
mov account—>balance, %rax

add amount, %rax
contexf switch

mov %rax, account—>balance

contexk|switch
mov %rax, account—>balance

lost write to balance

“winner” of the race

36

the lost write

account—>balance += amount; (in two threads, same account)

Thread A Thread B

mov account—>balance, %rax
add amount, %rax

context switch
mov account—>balance, %rax

add amount, %rax
contexf switch

mov %rax, account—>balance

contexk|switch
mov %rax, account—>balance

lost write to balance

“winner” of the race

lost track of thread A's money

36

thinking about race conditions (1)
what are the possible values of x7

(initially z = y = 0)
Thread A Thread B
x4 1 Y 2

37

thinking about race conditions (1)

what are the possible values of x7

(initially z = y = 0)
Thread A Thread B
x4 1 Y 2

must be 1. Thread B can'’t do anything

37

thinking about race conditions (2)
what are some possible values of 7

(initially z = y = 0)
Thread A Thread B
rT—y+1 Y 2

Yy X2

38

thinking about race conditions (2)

what are some possible values of 7
(initially z = y = 0)
Thread A Thread B
rT—y+1 Y 2
Yy X2

if A goes first, then B: 1
if B goes first, then A: 5

if B line one, then A, then B line two: 3

38

thinking about race conditions (3)
what are the possible values of x7

(initially z = y = 0)
Thread A Thread B
T+ 1 T2

39

thinking about race conditions (3)

what are the possible values of x7

(initially z = y = 0)
Thread A Thread B
T+ 1 T2

1lor?2

39

thinking about race conditions (3)

what are the possible values of x7

(initially z = y = 0)
Thread A Thread B
T+ 1 T2

1lor?2

..but why not 37
B: xbit0 <« 0
A:xbit0<«+1
A: xbitl <« 0
B: xbitl <« 1

39

thinking about race conditions (2)

what are some possible values of 7

(initially z = y = 0)
Thread A Thread B
rT—y+1 Y 2

Yy X2

if A goes first, then B: 1

if B goes first, then A: 5

if B line one, then A, then B line two: 3

..and why not 7:
B (start): y < 2 = 0010two; then y bit 3 «— 0; y bit 2 < 1; then
A: x < 1107rwo + 1 = 7; then
B (finish): y bit 1 < 0; y bit 0 < 0

40

atomic operation

atomic operation = operation that runs to completion or not at all

we will use these to let threads work together

most machines: loading/storing (aligned) words is atomic
so can't get 3 from z <— 1 and x < 2 running in parallel

aligned ~ address of word is multiple of word size (typically done by
compilers)

but some instructions are not atomic; examples:

x86: integer add constant to memory location
many CPUs: loading/storing values that cross cache blocks
e.g. if cache blocks @x40 bytes, load/store 4 byte from addr. Ox3E is not atomic

41

lost adds (program)

.global update_loop
update_loop:
addl $1, the_value // the_value (global variable) += 1

dec %rdi // argument 1 -= 1
jg update_loop // i1f argument 1 >= 0 repeat
ret

int the_value;

extern void *update_loop(void *);

int main(void) {
the_value = 0;
pthread_t A, B;
pthread_create(&A, NULL, update_loop, (void*) 1000000);
pthread_create(&B, NULL, update_loop, (void*) 1000000);
pthread_join(A, NULL);
pthread_join(B, NULL);
// expected result: 1000000 + 1000000
printf("the_value = %d\n", the_value);

2000000

42

lost adds (results)

the_value =7

5000 +

4000 -

frequency
w
o
o
o

2000 -

1000 -

800000 1000000 1200000 1400000 1600000 1800000 2000000

but how?

probably not possible on single core
exceptions can't occur in the middle of add instruction

..but ‘add to memory’ implemented with multiple steps

still needs to load, add, store internally
can be interleaved with what other cores do

44

but how?

probably not possible on single core
exceptions can't occur in the middle of add instruction

..but ‘add to memory’ implemented with multiple steps

still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it's more complicated than that — we'll talk later)

44

so, what is actually atomic

for now we'll assume: load/stores of ‘words’
(64-bit machine = 64-bits words)

in general: processor designer will tell you

their job to design caches, etc. to work as documented

45

too much milk

roommates Alice and Bob want to keep fridge stocked with milk:

time \ Alice \ Bob

3:00 | look in fridge. no milk

3:05 | leave for store

3:10 | arrive at store look in fridge. no milk

3:15 | buy milk leave for store

3:20 | return home, put milk in fridge | arrive at store

3:25 buy milk

3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?

46

too much milk “solution” 1 (algorithm)

leave a note: “I am buying milk”
place before buying
remove after buying
don't try buying if there's a note

~ setting/checking a variable (e.g. “note = 1")
with atomic load/store of variable

if (no milk) {
if (no note) {
leave note;
buy milk;
remove note;

too much milk “solution” 1 (timeline)

Alice Bob
if (no milk) {
if (no note) {
if (no milk) {
if (no note) {
leave note;
buy milk;
remove note;

leave note;
buy milk;
remove note;

48

too much milk “solution” 2 (algorithm)

intuition: leave note when buying or checking if need to buy
leave note;
if (no milk) {
if (no note) {
buy milk;
}

}

remove note;

49

too much milk: “solution” 2 (timeline)
Alice

leave note;
if (no milk) {
if (no note) {
buy milk;
}
}

remove note;

50

too much milk: “solution” 2 (timeline)
Alice

leave note;
if (no milk) {
if (no note) {<— but there's always a note
buy milk;
ks
}

remove note;

50

too much milk: “solution” 2 (timeline)
Alice

leave note;
if (no milk) {
if (no note) {<— but there's always a note

buy w K

) ~will never buy milk (twice or once)

}

remove note;

50

“solution” 3: algorithm

intuition: label notes so Alice knows which is hers (and vice-versa)
computer equivalent: separate noteFromAlice and noteFromBob variables

Alice Bob
leave note from Alice; leave note from Bob;
if (no milk) { if (no milk) {
if (no note from Bob) { if (no note from Alice]
buy milk buy milk
} }
} }
remove note from Alice; remove note from Bob;

51

too much milk: “solution” 3 (timeline)
Alice Bob

leave note from Al-ice
if (no milk) {
leave note from Bob
if (no note from Bob) {

y buy—mtik—

if (no milk) {
if (no note from Alice) {

} buy—r TR
}

remove note from Bob
remove note from Alice

52

too much milk: is it possible

is there a solutions with writing/reading notes?
~ loading/storing from shared memory

yes, but it's not very elegant

53

too much milk: solution 4 (algorithm)

Alice Bob
leave note from Alice leave note from Bob
while (note from Bob) { if (no note from Alice) {
do nothing if (no milk) {
} buy milk
if (no milk) { }
buy milk }
} remove note from Bob

remove note from Alice

54

too much milk: solution 4 (algorithm)

Alice Bob
leave note from Alice leave note from Bob
while (note from Bob) { if (no note from Alice) {
do nothing if (no milk) {
} buy milk
if (no milk) { }
buy milk }
} remove note from Bob

remove note from Alice

exercise (hard): prove (in)correctness

54

too much milk: solution 4 (algorithm)

Alice Bob
leave note from Alice leave note from Bob
while (note from Bob) { if (no note from Alice) {
do nothing if (no milk) {
} buy milk
if (no milk) { }
buy milk }
} remove note from Bob

remove note from Alice

exercise (hard): prove (in)correctness

54

too much milk: solution 4 (algorithm)

Alice Bob
leave note from Alice leave note from Bob
while (note from Bob) { if (no note from Alice) {
do nothing if (no milk) {
} buy milk
if (no milk) { }
buy milk }
} remove note from Bob

remove note from Alice

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

54

Peterson’s algorithm
general version of solution

see, e.g., Wikipedia

we'll use special hardware support instead

55

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

56

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk
critical section: code that exactly one thread can execute at a
time

result of critical section

56

some definitions

mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk
critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

56

the lock primitive

locks: an object with (at least) two operations:

acquire or lock — wait until lock is free, then “grab” it
release or unlock — let others use lock, wakeup waiters

typical usage: everyone acquires lock before using shared resource
forget to acquire lock? weird things happen

Lock (MilkLock) ;

if (no milk) {
buy milk

}

Unlock(MilkLock) ;

57

pthread mutex
#include <pthread.h>

pthread_mutex_t MilkLock;
pthread_mutex_init(&MilkLock, NULL);

pthread_mutex_lock(&MilkLock) ;
if (no milk) {

buy milk
}
pthread_mutex_unlock(&MilkLock) ;

58

xvb spinlocks
#include "spinlock.h"

struct spinlock MilkLock;
initlock(&MilkLock, "name for debugging");

acquire(&MilkLock) ;
if (no milk) {
buy milk
}
release (&MilkLock) ;

59

60

backup slides

61

lottery scheduler assignment

track “ticks” process runs

= number of times scheduled
simplification: don’t care if process uses less than timeslice

new system call: getprocesesinfo
copy info from process table into user space

new system call: settickets

set number of tickets for current process
should be inherited by fork

scheduler: choose pseudorandom weighted by tickets
caution! no floating point

62

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {
int thread_id = (int) argument;
int start = 500 * thread_-id;
int end = start + 500;
for (int i = start; i < end; ++i) {
DoSomethingWith(items[i]);
}

}
void run_threads() {
vector<pthread_t> threads(2);
for (int i = 0; i < 25 ++1i) {
pthread_create(&threads[i], NULL,
thread_function, (void*) 1);

63

passing thread IDs (1)

DataType items[1000];
void *thread_function(void *argument) {
int thread_id = (int) argument;
int start = 500 * thread_-id;
int end = start + 500;
for (int i = start; i < end; ++i) {
DoSomethingWith(items[i]);
}

}
void run_threads() {
vector<pthread_t> threads(2);
for (int i = 0; i < 25 ++1i) {
pthread_create(&threads[i], NULL,
thread_function, (void*) 1);

63

passing thread IDs (2)

DataType items[1000];

int num_threads;

void *thread_function(void *argument) {
int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads — 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);

+

}
void run_threads() {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {
pthread_create(&threads[i], NULL,
thread_function, (void*) 1);

passing thread IDs (2)

DataType items[1000];

int num_threads;

void *thread_function(void *argument) {
int thread_id = (int) argument;
int start = thread_id * (1000 / num_threads);
int end = start + (1000 / num_threads);
if (thread_id == num_threads — 1) end = 1000;
for (int i = start; i < end; ++i) {

DoSomethingWith(items[i]);

+

}
void run_threads() {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {
pthread_create(&threads[i], NULL,
thread_function, (void*) 1);

passing data structures

class ThreadInfo {
public:

s

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;

delete info;
return NULL;
}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {
pthread_create(&threads[i], NULL,

thread_function, (void *) new ThreadInfo(..

)5

65

passing data structures

class ThreadInfo {
public:

s

void *thread_function(void *argument) {
ThreadInfo *info = (ThreadInfo *) argument;

delete info;
return NULL;
}

void run_threads(int N) {
vector<pthread_t> threads(num_threads);
for (int i = 0; i < num_threads; ++i) {
pthread_create(&threads[i], NULL,

thread_function, [(void *) new ThreadInfo(..

D)

65

	which scheduler should I use?
	threads
	why threads?
	aside: alternate threading models
	thread control block
	pthread create
	exercise: pthread create race
	pthread join and exit
	parallel calculations in threads
	passing info to threads
	thread ID as argument
	globals + info struct as argument
	no globals + info struct as argument
	everything on the heap

	on thread resources, detached threads
	exercise
	join, detach, etc.

	on error checking

	introduction: correctness
	the lost write
	motivation: threaded ATM server?
	example

	race conditions and atomicity
	thinking about simple races
	atomicity definition
	example: x86 add not atomic
	what is atomic?

	too much milk: locks from load/store?
	setup: buying milk
	wrong solution 1: missed notes
	wrong solution 2: read own note
	wrong solution 3: too little milk
	correct solution: Peterson's algorithm

	definitions: mutual exclusion, critical section
	locks
	backup slides
	lottery assignment preview
	pthread create: passing data (old examples)

