
synchronization 3: rwlocks / deadlock

1

Changelog
Changes not seen in first lecture:

20 Feb 2020: moving two files graphs: make directory names consistent
with code
20 Feb 2020: is deadlock exercise: correct option lettering
20 Feb 2020: livelock example: don’t use trylock to acquire first lock

1

last time
counting semaphores

up: increment counter
down: decrement counter, but wait first if count is zero
intuition: track available quantity of resource

binary semaphores

semaphores and monitors accomplish the same things
can implement one with the other

reader/writer locks
implementing with monitors
problem: priority

2

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

key method: track number of waiting readers/writers

3

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

key method: track number of waiting readers/writers

3

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
4

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
4

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
4

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)

...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

5

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

6

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

6

rwlock exercise
suppose we want something in-between reader and writer priority:
reader-priority except if writers wait more than 1 second
exercise: what do we change?
...
int waiting_readers = 0;
ReadLock() {

mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers + readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

} 7

the one-way bridge

8

the one-way bridge

8

the one-way bridge

8

the one-way bridge

8

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…
everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

9

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

9

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

9

pipe() deadlock
BROKEN example:
int child_to_parent_pipe[2], parent_to_child_pipe[2];
pipe(child_to_parent_pipe); pipe(parent_to_child_pipe);
if (fork() == 0) {

/* child */
write(child_to_parent_pipe[1], buffer, HUGE_SIZE);
read(parent_to_child_pipe[0], buffer, HUGE_SIZE);
exit(0);

} else {
/* parent */
write(parent_to_child_pipe[1], buffer, HUGE_SIZE);
read(child_to_parent[0], buffer, HUGE_SIZE);

}

This will hang forever (if HUGE_SIZE is big enough).

10

deadlock waiting
child writing to pipe waiting for free buffer space

…which will not be available until parent reads

parent writing to pipe waiting for free buffer space

…which will not be available until child reads

11

circular dependency
parent to child

pipe buffer

child to parent
pipe buffer

parent
process

child
process

waiting for space
to write

waiting for space
to write

needs to be
read by process
to free space

needs to be
read by process
to free space

12

moving two files
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
mutex_lock(&from_dir−>lock);
mutex_lock(&to_dir−>lock);

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

13

moving two files: lucky timeline (1)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

lock(&B->lock);
lock(&A->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

14

moving two files: lucky timeline (2)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);

lock(&B->lock…
(do move) (waiting for B lock)
unlock(&B->lock);

lock(&B->lock);
lock(&A->lock…

unlock(&A->lock);
lock(&A->lock);
(do move)
unlock(&A->lock);
unlock(&B->lock);

15

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

16

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

16

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

16

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

16

moving two files: dependencies
directory B

directory A

thread 1 thread 2

waiting for lock

waiting for lock

lock held by

lock held by

17

moving three files: dependencies
directory B

directory Cdirectory A

thread 1 thread 2

thread 3

waiting for lock

waiting for lock

waiting for lock

lock held by

lock held by

lock held by

18

moving three files: unlucky timeline
Thread 1 Thread 2 Thread 3

MoveFile(A, B, "foo") MoveFile(B, C, "bar") MoveFile(C, A, "quux")

lock(&A->lock);

lock(&B->lock);

lock(&C->lock);

lock(&B->lock… stalled

lock(&C->lock… stalled

lock(&A->lock… stalled

19

deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

20

deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled

21

free space: dependency graph
memory in
2 (1MB) units

thread 1 thread 2

allocated

waiting for

22

deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

23

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

24

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

24

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

25

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

25

deadlock requirements
mutual exclusion

one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can’t ‘steal’

circular wait
there exists a set {T1, . . . , Tn} of waiting threads such that

T1 is waiting for a resource held by T2
T2 is waiting for a resource held by T3
…
Tn is waiting for a resource held by T1

26

how is deadlock possible?
Given list: A, B, C, D, E
RemoveNode(LinkedListNode *node) {

pthread_mutex_lock(&node−>lock);
pthread_mutex_lock(&node−>prev−>lock);
pthread_mutex_lock(&node−>next−>lock);
node−>next−>prev = node−>prev;
node−>prev−>next = node−>next;
pthread_mutex_unlock(&node−>next−>lock);
pthread_mutex_unlock(&node−>prev−>lock);
pthread_mutex_unlock(&node−>lock);

}

Which of these (all run in parallel) can deadlock?
A. RemoveNode(B) and RemoveNode(D)
B. RemoveNode(B) and RemoveNode(C)
C. RemoveNode(B) and RemoveNode(C) and RemoveNode(D)
D. A and C E. B and C
F. all of the above G. none of the above 27

how is deadlock — solution
Remove B Remove C
lock B lock C
lock A (prev) wait to lock B (prev)
wait to lock C (next)

With B and D — only overlap in in node C — no circular wait possible

29

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
31

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
32

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
33

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
34

AllocateOrFail
Thread 1 Thread 2

AllocateOrFail(1 MB)
AllocateOrFail(1 MB)

AllocateOrFail(1 MB) fails!
AllocateOrFail(1 MB) fails!

Free(1 MB) (cleanup after failure)
Free(1 MB) (cleanup after failure)

okay, now what?
give up?
both try again? — maybe this will keep happening? (called livelock)
try one-at-a-time? — gaurenteed to work, but tricky to implement

35

AllocateOrSteal
Thread 1 Thread 2

AllocateOrSteal(1 MB)
AllocateOrSteal(1 MB)

AllocateOrSteal(1 MB) Thread killed to free 1MB
(do work)

problem: can one actually implement this?

problem: can one kill thread and keep system in consistent state?

36

fail/steal with locks
pthreads provides pthread_mutex_trylock — “lock or fail”

some databases implement revocable locks
do equivalent of throwing exception in thread to ‘steal’ lock
need to carefully arrange for operation to be cleaned up

37

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
38

abort and retry limits?
abort-and-retry

how many times will you retry?

39

moving two files: abort-and-retry
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
while (true) {
mutex_lock(&from_dir−>lock);
if (mutex_trylock(&to_dir−>lock) == LOCKED) break;
mutex_unlock(&from_dir−>lock);

}

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

40

moving two files: lots of bad luck?
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
41

livelock
livelock: keep aborting and retrying without end

like deadlock — no one’s making progress
potentially forever

unlike deadlock — threads are not waiting

42

preventing livelock
make schedule random — e.g. random waiting after abort

make threads run one-at-a-time if lots of aborting

other ideas?

43

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
44

stealing locks???
how do we make stealing locks possible

unclean: just kill the thread
problem: inconsistent state?

clean: have code to undo partial oepration
some databases do this

won’t go into detail in this class

45

revokable locks?
try {

AcquireLock();
use shared data

} catch (LockRevokedException le) {
undo operation hopefully?

} finally {
ReleaseLock();

}

46

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
47

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

48

acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers

48

acquiring locks in consistent order (2)
often by convention, e.g. Linux kernel comments:
/*
* ...
* Lock order:
* contex.ldt_usr_sem
* mmap_sem
* context.lock
*/

/*
* ...
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
* ...
*/

49

deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait
50

allocating all at once?
for resources like disk space, memory

figure out maximum allocation when starting thread
“only” need conservative estimate

only start thread if those resources are available

okay solution for embedded systems?

51

deadlock detection
idea: search for cyclic dependencies

52

detecting deadlocks on locks
let’s say I want to detect deadlocks that only involve mutexes

goal: help programmers debug deadlocks

…by modifying my threading library:
struct Thread {

... /* stuff for implementing thread */
/* what extra fields go here? */

};

struct Mutex {
... /* stuff for implementing mutex */
/* what extra fields go here? */

};

53

deadlock detection
idea: search for cyclic dependencies

need:
list of all contended resources
what thread is waiting for what?
what thread ‘owns’ what?

54

aside: divisible resources
deadlock is possible with divislbe resources like memory,…

example: suppose 6MB of RAM for threads total:
thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?

not a deadlock — thread 3 can still finish
and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

55

aside: divisible resources
deadlock is possible with divislbe resources like memory,…

example: suppose 6MB of RAM for threads total:
thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?

not a deadlock — thread 3 can still finish
and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

55

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

56

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

56

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

56

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

56

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

56

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

56

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

56

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock

this is deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

57

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock
this is deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

57

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

waiting for
2MB

owns

reducing memory: this is deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

58

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

waiting for
2MB

owns

reducing memory: this is deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

58

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

waiting for
2MB

owns

reducing memory: this is deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

58

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

waiting for
2MB

owns

reducing memory: this is deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

58

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

waiting for
2MB

owns

reducing memory: this is deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

58

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

waiting for
2MB

owns

reducing memory: this is deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

58

deadlock detection with divisibe resources
can’t rely on cycles in graphs in this case

alternate algorithm exists
similar technique to how we showed no deadlock

high-level intuition: simulate what could happen
find threads that could finish based on resources available now

full details: look up Baker’s algorithm

59

backup slides

60

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

lock to protect shared state

61

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

state: number of active readers, writers

61

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

conditions to wait for (no readers or writers, no writers)

61

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

broadcast — wakeup all readers when no writers

61

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

wakeup a single writer when no readers or writers

61

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

61

resource allocation graphs
nodes: resources or threads

edge thread→resource: thread waiting for resource

edge resource→thread: resource is “owned” by thread
holds lock on
will be deallocated by
…

62

resource allocate graphs
resource A

resource B

thread 1 thread 2

waiting on

waiting on

owned by

owned by

63

searching for cycles
cycle → deadlock happened!

finding cycles: recall 2150 topological sort (maybe???)

64

resource allocation graphs and quantity
so far: assuming resource is fully taken or not at all taken

what about resources like memory?
two processes can take parts of resource
…but deadlock still possible

there’s a version of resource allocation graphs for this case

65

using deadlock detection for prevention
suppose you know the maximum resources a process could request

make decision when starting process (“admission control”)

ask “what if every process was waiting for maximum resources”
including the one we’re starting

would it cause deadlock? then don’t let it start

called Baker’s algorithm

66

using deadlock detection for prevention
suppose you know the maximum resources a process could request

make decision when starting process (“admission control”)

ask “what if every process was waiting for maximum resources”
including the one we’re starting

would it cause deadlock? then don’t let it start

called Baker’s algorithm

66

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?

67

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?
67

exercise: why broadcast?
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

exercise: why can’t this be pthread_cond_signal?

hint: think of two threads calling down + two calling up?

brute force: only so many orders they can get the lock in
68

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

69

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

69

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

69

semaphores with monitors: no condition
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
pthread_cond_signal(

&count_is_positive_cv
);
pthread_mutex_unlock(&lock);

}

same as where we started…

70

semaphores with monitors: alt w/ signal
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
if (count > 0) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) {

pthread_cond_signal(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

71

on signal/broadcast generally
whenever using signal need to ask
what if more than one thread is waiting?

need to explain why those threads will be signalled eventually

…even if next thread signalled doesn’t run right away

another problem that would be avoided with Hoare scheduling

72

	last time
	reader-writer (con't)
	priority concept
	writer-priority
	writer-priority walkthrough
	reader-priority

	reader/writer lock exercise: timeout priority

	deadlock examples
	a one-way bridge
	dining philosophers
	with pipes
	with locks
	with memory

	definition
	short intuition
	conditions for deadlock

	exercise
	deadlock prevention
	techniques overview
	example: no waiting
	example: livelock
	revocable locks
	example: consistent order
	pre-requesting maximum resources

	deadlock detection
	problem with divisible resources?

	backup slides
	implementing rwlocks with monitors
	resource allocation graphs
	detection for deadlock prevention
	(if time) broadcast and signal exercise

