
Changelog

Changes not seen in first lecture:
19 March 2020: move page usage slides later
19 March 2020: adjust PF counting exercise to specify addreses, not
offsets
19 March 2020: Linux maps: correct shown mmap call for 0x400000

0

virtual memory 3

1

Zoom logistics
recommend: exit full screen

open chat + participants window

participants window has non-verbal feedback features

I will try to monitor the chat window

I can take questions via raise hand + turn on your audio…

but probably text is usually easier/more reliable?

I intend to record these (both through Zoom and locally)

2

general logistics
lectures streamed via Zoom with questions

videos + audio-recordings + slides available
if you have trouble getting at anything, let us know

please use Piazza

office hours via Discord with queue

quizzes still happening

3

last time
virtual memory — two-level tables

page fault handling
return from page fault normally → retry instruction
trick: fix page table before returning

allocate-on-demand
pretend to allocate right away
actually allocate later (on use)

copy-on-write
pretend to copy right away
actually allocate later (on write)

4

xv6: adding space on demand
struct proc {
uint sz; // Size of process memory (bytes)
...

};

xv6 tracks “end of heap” (now just for sbrk())

adding allocate on demand logic for the heap:

on sbrk(): don’t change page table right away

on page fault
case 1: if address ≥ sz: out of bounds: kill process
case 2: otherwise, allocate page containing address, return from trap

5

versus more complicated OSes
typical desktop/server:
range of valid addresses is not just 0 to maximum

need some more complicated data structure to represent

6

copy-on write cases
trying to write forbidden page (e.g. kernel memory)

kill program instead of making it writable

fault from trying to write read-only page:

case 1: multiple process’s page table entries refer to it
copy the page
replace read-only page table entry to point to copy

case 2: only one page table entry refers to it
make it writeable

7

mmap
Linux/Unix has a function to “map” a file to memory

int file = open("somefile.dat", O_RDWR);

// data is region of memory that represents file
char *data = mmap(..., file, 0);

// read byte 6 (zero-indexed) from somefile.dat
char seventh_char = data[6];

// modifies byte 100 of somefile.dat
data[100] = 'x';

// can continue to use 'data' like an array

8

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

9

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

9

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

9

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

10

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

10

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

10

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

10

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

10

mmap options (3)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file

…or’d with optional additonal flags
Linux: MAP_ANONYMOUS — ignore fd, allocate empty space

trick: Linux tracks process’s memory as list of mmap’s
…‘normal’ memory heap, just special case w/o file

and more (see manual page)
11

mmap options (4)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

addr, suggestion about where to put mapping (may be ignored)
not mandatory unless MAP_FIXED is used (which is rare)
can pass NULL — “choose for me”
address chosen will be returned
MAP_FAILED (constant) on failure

read()/write()/etc. use same physical memory
that’s referenced by process’s page table

…and OS must eventually modify disk with changes

read()/write()/etc. use same physical memory
that’s referenced by process’s page table

…and OS must eventually modify disk with changes

12

mmap exercise
suppose hello.txt initially contains “foo”:
int fd = open("hello.txt", O_RDWR);
char *p1 = mmap(NULL, 3 /* size */,

PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

char *p2 = mmap(NULL, 3, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
char *p3 = mmap(NULL, 3, PROT_READ, MAP_SHARED, fd, 0);
p2[2] = 'b';
p1[2] = 'x'; p1[1] = 'i';
char buffer[3];
read(fd, buffer, 3);
printf("%3s/%3s/%3s\n", buffer, p2, p3);

What is the output? (Assume no failures.)
A. foo/fob/foo D. fix/fob/fix
B. fix/fob/foo E. fix/fob/fob
C. fix/fix/fix F. something else

13

mmap exercise
suppose hello.txt initially contains “foo”:
int fd = open("hello.txt", O_RDWR);
char *p1 = mmap(NULL, 3 /* size */,

PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

char *p2 = mmap(NULL, 3, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
char *p3 = mmap(NULL, 3, PROT_READ, MAP_SHARED, fd, 0);
p2[2] = 'b';
p1[2] = 'x'; p1[1] = 'i';
char buffer[3];
read(fd, buffer, 3);
printf("%3s/%3s/%3s\n", buffer, p2, p3);

What is the output? (Assume no failures.)
A. foo/fob/foo D. fix/fob/fix
B. fix/fob/foo E. fix/fob/fob
C. fix/fix/fix F. something else

14

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

16

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000

read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

16

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000

read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

16

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/cat

device major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

16

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/cat

device major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

16

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);

as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

17

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)

read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

18

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)

read from second page?
page fault

PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

18

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault

PF handler: find cached page
update page table, retry

read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

18

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry

read from first page?
page fault

PF handler: no cached page
first read in page
PF handler: read in page
now point to page

18

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault

PF handler: no cached page
first read in page

PF handler: read in page
now point to page

18

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page

PF handler: read in page
now point to page

18

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

18

shared mmap
int fd = open("/tmp/somefile.dat", O_RDWR);
mmap(0, 64 * 1024, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

from /proc/PID/maps for this program:

7f93ad877000-7f93ad887000 rw-s 00000000 08:01 1839758 /tmp/somefile.dat

19

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

20

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

20

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

20

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

20

minor and major faults
minor page fault

page is already in memory (“page cache”)
just fill in page table entry

major page fault
page not already in memory (“page cache”)
need to allocate space
possibly need to read data from disk/etc.

21

Linux: reporting minor/major faults
$ /usr/bin/time --verbose some-command

Command being timed: "some-command"
User time (seconds): 18.15
System time (seconds): 0.35
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:19.57

...
Maximum resident set size (kbytes): 749820
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 230166
Voluntary context switches: 1423
Involuntary context switches: 53
Swaps: 0

...
Exit status: 0

22

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

23

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before

write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page tablecopies of file data, modified

24

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before

write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page tablecopies of file data, modified

24

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before
write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page table

copies of file data, modified

24

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before
write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page table

copies of file data, modified

24

maps counting
4KB (0x1000 byte) pages
virtual 0x10000-0x1FFFF (64KB) → “foo.dat” bytes
0-0x0FFFF

map setup private (copy-on-write)
bytes 0-0x3FFF and 0x5000-0x6FFF cached in memory

program reads addresses 0x13800–0x15800
then, program overwrites addresses 0x14800–0x15100
assume: program page table filled in on demand only

smarter OS would probably proactively fill in multiple pages

question: how much page/protection faults?

1: set PTE for offset 0x3000-0x3FFF (use cached version)
2,3: read from disk + set PTE for 0x4000-0x4FFF; set PTE for
0x5000-0x5FFF
4,5: copy for 0x4000-0x4FFF, 0x5000-0x5FFF

25

maps counting
4KB (0x1000 byte) pages
virtual 0x10000-0x1FFFF (64KB) → “foo.dat” bytes
0-0x0FFFF

map setup private (copy-on-write)
bytes 0-0x3FFF and 0x5000-0x6FFF cached in memory

program reads addresses 0x13800–0x15800
then, program overwrites addresses 0x14800–0x15100
assume: program page table filled in on demand only

smarter OS would probably proactively fill in multiple pages

question: how much page/protection faults?

1: set PTE for offset 0x3000-0x3FFF (use cached version)
2,3: read from disk + set PTE for 0x4000-0x4FFF; set PTE for
0x5000-0x5FFF
4,5: copy for 0x4000-0x4FFF, 0x5000-0x5FFF

25

maps counting
4KB (0x1000 byte) pages
virtual 0x10000-0x1FFFF (64KB) → “foo.dat” bytes
0-0x0FFFF

map setup private (copy-on-write)
bytes 0-0x3FFF and 0x5000-0x6FFF cached in memory

program reads addresses 0x13800–0x15800
then, program overwrites addresses 0x14800–0x15100
assume: program page table filled in on demand only

smarter OS would probably proactively fill in multiple pages

question: how much page/protection faults?
1: set PTE for offset 0x3000-0x3FFF (use cached version)
2,3: read from disk + set PTE for 0x4000-0x4FFF; set PTE for
0x5000-0x5FFF
4,5: copy for 0x4000-0x4FFF, 0x5000-0x5FFF

26

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

27

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);

as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

28

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

29

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

29

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

29

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

29

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

29

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memory

data in memory

29

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memory

data in memory

29

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

30

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file
need to free up more space?
can move copied data to disk

“swapped out”
modified data
‘swapped out’
modified data

31

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file

need to free up more space?
can move copied data to disk

“swapped out”
modified data
‘swapped out’
modified data

31

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file

need to free up more space?
can move copied data to disk

“swapped out”
modified data

‘swapped out’
modified data

31

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file
need to free up more space?
can move copied data to disk

“swapped out”
modified data

‘swapped out’
modified data

31

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

32

swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

32

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

33

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

33

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

33

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

34

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

34

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

34

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

34

page cache components [text]
mapping: virtual address or file+offset → physical page

handle cache hits

find backing location based on virtual address/file+offset
handle cache misses

track information about each physical page
handle page allocation
handle cache eviction

35

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

37

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

38

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

39

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

39

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

39

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

40

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

41

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

42

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

43

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

44

mapped pages (read/write, shared)

file data, cached in memory

file data on disk/SSD

45

page replacement
step 1: evict a page to free a physical page

case 1: there’s an unused page, just use that (easy)

case 2: need to remove whatever what’s in that page (more work)

step 2: load new, more important in its place

needs some way of knowing location of data

47

page replacement
step 1: evict a page to free a physical page

case 1: there’s an unused page, just use that (easy)

case 2: need to remove whatever what’s in that page (more work)

step 2: load new, more important in its place

needs some way of knowing location of data

48

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

49

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

50

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

50

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

50

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

51

Linux maps: list of maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 /bin/cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

PCB contains list of struct vm_area_struct with:
(shown in this output):

virtual address start, end
permissions
offset in backing file (if any)
pointer to backing file (if any)

(not shown):
info about sharing of non-file data (e.g. heap after fork) …

52

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

53

Linux: tracking swapped out pages
need to lookup location on disk

potentially one location for every virtual page

trick: store location in “ignored” part of page table entry
instead of physical page #, permission bits, etc., store offset on disk

54

page replacement
step 1: evict a page to free a physical page

case 1: there’s an unused page, just use that (easy)

case 2: need to remove whatever what’s in that page (more work)

step 2: load new, more important in its place

needs some way of knowing location of data

55

evicting a page
remove victim page from page table, etc.

every page table it is referenced by
every list of file pages
…

if needed, save victim page to disk

going to require:

way to find page tables, etc. using page

way to detect whether it needs to be saved to disk

56

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

57

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure?

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

57

tracking physical pages: finding mappings
want to evict a page? remove from page tables, etc.

need to track where every page is used!

common solution: structure for every physical page with info about
every cached file/page table using page

58

Linux: reverse mapping (file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

per-physical page info
(struct page) page number

given page number
find references to that page
(e.g. to remove/change them)

59

60

backup slides

61

fast copies
recall : fork()

creates a copy of an entire program!

(usually, the copy then calls execve — replaces itself with another
program)

how isn’t this really slow?

62

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only
can’t be shared?

63

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants
shared as read-only

can’t be shared?

63

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only

can’t be shared?

63

trick for extra sharing
sharing writeable data is fine — until either process modifies the
copy

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

64

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 1 0x12345
0x00602 1 1 0x12347
0x00603 1 1 0x12340
0x00604 1 1 0x200DF
0x00605 1 1 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

65

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

65

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

65

copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 1 0x300FD
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

65

sketch: implementing mmap
access mapped file for first time, read from disk

(like swapping when memory was swapped out)

write “mapped” memory, write to disk eventually
need to detect whether writes happened
usually hardware support: dirty bit

extra detail: other processes should see changes
all accesses to file use same physical memory
how? OS tracks copies of files in memory

66

aside: Zipf model
working set model makes sense for programs

but not the only use of caches

example: Wikipedia — most popular articles

67

Wikipedia page views for 1 hour

100 101 102 103 104 105 106

Rank

100

101

102

103

104

105

Vi

ew
s

NOTE: log-log-scale
68

Zipf distribution
Zipf distribution: straight line on log-log graph of rank v. count

a few items a much more popular than others
most caching benefit here

long tail: lots of items accessed a very small number of times
more cache less efficient — but does something
not like working set model, where there’s just not more

69

good caching strategy for Zipf
keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

70

good caching strategy for Zipf
keep the most recently popular things

up till what you have room for
still benefit to caching things used 100 times/hour versus 1000

LRU is okay — popular things always recently used
seems to be what Wikipedia’s caches do?

70

alternative policies for Zipf
least frequently used

very simple policy
if pure Zipf distribution — what you want
practical problem: what about changes in popularity?

least frequently used + adjustments for ‘recentness’

more?

71

models of reuse
working set/locality

active things are likely to be active soon
what’s popular changes over time
want: something like least-recently used

Zipf distribution
some things are just popular always
want: something like least-frequently used

other models?
when X is loaded, Y is always needed?

want: identify pairs of related values, load/discard together
some things are only used once

want: identify these, do not cache

72

page cache versus processor cache
unlike processor cache, page cache…

stores multi-kilobyte blocks
add/remove whole 4+KB pages versus 64-128B blocks
smaller page tables; better for hard drives/SSDs

handles misses (get value if not cached) in software
OS data structures tack data on disk/SSDs
hardware doesn’t know/care about them
hardware only knows how to invoke page fault handler

has no restrictions on where values are stored in cache
any physical page can be used for any virtual page
(processor caches have limited associativity)

73

page cache versus processor cache
unlike processor cache, page cache…

stores multi-kilobyte blocks
add/remove whole 4+KB pages versus 64-128B blocks
smaller page tables; better for hard drives/SSDs

handles misses (get value if not cached) in software
OS data structures tack data on disk/SSDs
hardware doesn’t know/care about them
hardware only knows how to invoke page fault handler

has no restrictions on where values are stored in cache
any physical page can be used for any virtual page
(processor caches have limited associativity)

73

page cache versus processor cache
unlike processor cache, page cache…

stores multi-kilobyte blocks
add/remove whole 4+KB pages versus 64-128B blocks
smaller page tables; better for hard drives/SSDs

handles misses (get value if not cached) in software
OS data structures tack data on disk/SSDs
hardware doesn’t know/care about them
hardware only knows how to invoke page fault handler

has no restrictions on where values are stored in cache
any physical page can be used for any virtual page
(processor caches have limited associativity)

73

page cache versus processor cache
unlike processor cache, page cache…

stores multi-kilobyte blocks
add/remove whole 4+KB pages versus 64-128B blocks
smaller page tables; better for hard drives/SSDs

handles misses (get value if not cached) in software
OS data structures tack data on disk/SSDs
hardware doesn’t know/care about them
hardware only knows how to invoke page fault handler

has no restrictions on where values are stored in cache
any physical page can be used for any virtual page
(processor caches have limited associativity)

73

page cache versus processor cache
unlike processor cache, page cache…

stores multi-kilobyte blocks
add/remove whole 4+KB pages versus 64-128B blocks
smaller page tables; better for hard drives/SSDs

handles misses (get value if not cached) in software
OS data structures tack data on disk/SSDs
hardware doesn’t know/care about them
hardware only knows how to invoke page fault handler

has no restrictions on where values are stored in cache
any physical page can be used for any virtual page
(processor caches have limited associativity)

73

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

75

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

75

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

75

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)

flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

75

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)

flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

75

Linux: tracking memory regions

struct vm_area_struct { ...
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address

within vm_mm. */
...
pgprot_t vm_page_prot; /* Access permissions of this VMA. */
unsigned long vm_flags; /* Flags, see mm.h. */
...
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
...
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE

units */
struct file * vm_file; /* File we map to (can be NULL). */
...

} __randomize_layout;

virtual addresses of mapping
mapping are part of sorted list/tree
to allow finding by start/end address

permissions (read/write/execute)flags: private or shared? …
private = copy-on-write
shared = make changes to underlying file

for finding other
uses of non-file pages
e.g. two copies after fork

process control block (task_struct)

sorted list of mmap’s
(vm_area_structs)

open files (struct file)

76

Linux: tracking files in memory
struct file {

...
struct inode *f_inode;
...

};
...
struct inode {

...
struct address_space i_data;
...

};
...
struct address_space {

...
struct radix_tree_root i_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mappings */
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

process control block (task_struct)

open file info (struct file)

file on disk info (struct inode)

address_space
cached physical pages for file
mmap() virtual addresses for file

77

Linux: tracking files in memory
struct file {

...
struct inode *f_inode;
...

};
...
struct inode {

...
struct address_space i_data;
...

};
...
struct address_space {

...
struct radix_tree_root i_pages; /* cached pages */
atomic_t i_mmap_writable;/* count VM_SHARED mappings */
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

process control block (task_struct)

open file info (struct file)

file on disk info (struct inode)

address_space
cached physical pages for file
mmap() virtual addresses for file

77

Linux: reverse mapping (non-file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

linked list of mmap regions
(anon_vma)

page table

per-physical page info
(struct page) page number

given non-file page
(heap, copied-on-write copy of file, etc.)
find references to that page
(may be multiple because of fork, etc.)

78

list of allocations per page
naive solution: seperate list for each page?

a lot of overhead (many tens of bytes per 4K page?)

but, trick: many pages ‘copied’ at the same time (e.g. fork)

idea: share list between all pages
initially: list one of mmap region
on fork: add to existing list; create a new one

79

Linux: physical page → file → PTE
Linux tracking where file pages are in page tables:
struct page {

...
struct address_space *mapping;
pgoff_t index; /* Our offset within mapping. */
...

};
struct address_space {

...
struct rb_root_cached i_mmap; /* tree of private and shared mappings */
...

};

tree of mappings lets us find vm_area_structs and PTEs

rather complicated look up (but writing ot disk is already slow)
80

	space on demand cases
	copy-on-write caes
	mmap
	mmap interface
	exercise
	Linux: /proc/PID/maps
	read-only mmaps
	shared mmaps
	major/minor faults
	copy-on-write mmaps
	exericse

	unbacked maps and swapping (simple)
	copy-on-write maps and swapping
	generalizing mmap: swapping

	page cache
	memory = cache for disk
	page cache components
	forward mappings: cache hits
	cache misses: high-level
	forward mapping for cache misses
	reverse mapping and supporting eviction

	Backup slides
	copy-on-write review
	mmap implementation sketch
	aside: Zipf model
	cache model summary
	memory as a cache for disk
	linux maps example
	vm_area_struct code
	Linux file caches (code)
	Linux reverse map (non-file pages)
	Linux reverse map efficiency
	Linux reverse page map (code)

