
virtual memory 4

1



Zoom logistics
recommend: exit full screen

open chat + participants window

participants window has non-verbal feedback features

I will try to monitor the chat window

I can take questions via raise hand + turn on your audio…

but probably text is usually easier/more reliable?

I intend to record these (both through Zoom and locally)

2



last time
mmap

allow programs to place files in their memory
multiple users of file: get same physical memory

page cache idea
most of memory is cache for program + file data

page cache data structures
hit: page table (HW), OS stuff for file locations
miss: file location to disk mappping (filesystem)
miss: program location to disk mapping (trick: in PTE?)

supporting page replacement
out of space? evict used page + replace with new data
reverse mappings to remove pointers to evicted page

from all page tables, etc.

3



page cache components [text]
mapping: virtual address or file+offset → physical page

handle cache hits

find backing location based on virtual address/file+offset
handle cache misses

track information about each physical page
handle page allocation
handle cache eviction

4



page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

6



page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

7



tracking physical pages: finding free pages
Linux has list of “least recently used” pages:
struct page {

...
struct list_head lru; /* list_head ~ next/prev pointer */
...

};

how we’re going to find a page to allocate
(and evict from something else)

later — what this list actually looks like (how many lists, …)

8



page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

9



page replacement goals
hit rate: minimize number of misses

throughput: minimize overhead/maximize performance

fairness: every process/user gets its ‘share’ of memory

will start with optimizing hit rate

10



max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

11



max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

11



being proactive?
can avoid misses by “reading ahead”

guess what’s needed — read in ahead of time
wrong guesses can have costs besides more cache misses

can save modified pages to disk in the background

we will get back to this later

for now — only access/evict on demand

12



optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

13



optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

13



Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

14



Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

14



Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

14



Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

14



Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

14



Belady’s MIN exercise

A B C D B B A C A D C

1 A
2 B
3 C

phys.
page#

referenced (virtual) pages:
time

exercise: What does this access to D replace? (A, B, or C?)

15



predicting the future?
can’t really…

look for common patterns

16



working set intuition
say we’re executing a loop

what memory does this require?

code for the loop

code for functions called in the loop
and functions they call

data structures used by the loop and functions called in it, etc.

only uses a subset of the program’s memory

17



the working set model
one common pattern: working sets

at any time, program is using a subset of its memory

…called its working set

rest of memory is inactive

…until program switches to different working set

18



working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

19



working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

19



cache size versus miss rate

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications” 20



estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

21



estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

21



practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

22



practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

22



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

23



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

23



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

23



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

23



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

23



least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

24



least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

24



least recently used (exercise) [intro]
A B A D C B D B C D A

1
2
3

25



least recently used (exercise)
A B A D C B D B C D A

1 A A A A
2 B B B
3 D

26



least recently used (exercise) (2)
A B A D C B D B C D A

1 A A A A A
2 B B B C
3 D D

28



least recently used (exercise) (3)
A B A D C B D B C D A

1 A A A A A B B B B B
2 B B B C C C C C C
3 D D D D D D D

30



least recently used (exercise) (4)
A B A D C B D B C D A

1 A A A A A B B B B B A
2 B B B C C C C C C C
3 D D D D D D D D

32



pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
probably 100+x slowdown?

33



pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
probably 100+x slowdown?

33



so, what’s practical
probably won’t implement LRU — too slow

what can we practically do?

34



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW

35



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW

35



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW

35



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW

35



recording accesses
goal: “check is this physical page still being used?”

software support: temporarily mark page table invalid
use resulting page fault to detect “yes”

hardware support: accessed bits in page tables
hardware sets to 1 when accessed

36



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info
processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time Y …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault

update page info +
mark present

37



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bits: multiple processes

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00483 1 1 0 … 0x4442
… … … … … …

page table for program 2

OS needs to clear+check
all accessed bits
for the physical page

39



dirty bits
“was this part of the mmap’d file changed?”

“is the old swapped copy still up to date?”

software support: temporarily mark read-only

hardware support: dirty bit set by hardware
same idea as accessed bit, but only changed on writes

40



x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

41



approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

42



approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

42



approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

42



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced
place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

43



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced

place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

43



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced

place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

43



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced
place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

43



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

44



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

44



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

44



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

44



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

44



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

44



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

44



second chance example: exercise (1)
A B C D — — — B A

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

exercise: What does this access to A replace? (D, B, or C?)
what is at end of list after? (PP 1, 2, or 3?)

45



second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

46



second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

46



second chance example (2)
A B C D — — — B A — C —

1 A D
2 B C
3 C C A

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R 1NR *2R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR 3R 1NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R 2NR 3R

48



second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

49



second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

49



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

50



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

50



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

50



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

50



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

50



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

50



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

50



tracking usage: CLOCK (view 1)

page #4: last referenced bits: Y Y Y…
page #5: last referenced bits: N N N…
page #6: last referenced bits: N Y Y…
page #7: last referenced bits: Y N Y…
page #8: last referenced bits: Y Y N…
page #1: last referenced bits: Y Y Y…
page #2: last referenced bits: N N N…
page #3: last referenced bits: Y Y N…

ordered list
of physical pages

periodically:
take page from bottom of list
record current referenced bit
clear reference bit for next pass
add to top of list

51



tracking usage: CLOCK (view 2)

page #1:
last ref. bits: Y Y Y…

page #2:
last ref. bits: N N N…

page #3:
last ref. bits: N Y Y…

page #4:
last ref. bits: Y N Y…

page #5:
last ref. bits: Y Y N…

page #6:
last ref. bits: Y Y Y…

page #7:
last ref. bits: N N N…

page #8:
last ref. bits: Y Y N…

52



53



backup slides

54



detecting accesses
non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

55



detecting accesses
non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

55



detecting accesses
non-mmap file reads/writes — modify read()/write()

otherwise, two options:…

software-only: temporarily set page table entry invalid
page fault handler record access + sets as valid

hardware assisted: hardware sets accessed bit in page table
OS scans accessed bits later
reverse mapping can help find page table entries to scan

55



x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

56



multiple mappings?
page can have many page table entries

file mmap’d in many processes (e.g. 10 instances of emacs.exe)
copy-on-write pages after fork
address in kernel memory + address in user memory?
…

want to check all the accessed bits

57



aside: detecting write accesses
for updating mmap files/swap want to detect writes

same options as detect accesses in general:

software-only: temporarily set page table entry read-only
page fault handler records write + sets as writeable

hardware assisted: hardware sets dirty bit in page table
OS scans dirty bits later

58



working set model and phases
what happens when a program changes what it’s doing?

e.g. finish parsing input, now process it

phase change — discard one working set, gain another

phase changes likely to have spike of cache misses
whatever was cached, not what’s being accessed anymore
maybe along with change in kind of instructions being run

59



evidence of phases (gzip)

Sherwood et al, “Discovering and Exploiting Program Phases” 60



evidence of phases (gcc)

Sherwood et al, “Discovering and Exploiting Program Phases” 61



estimating working sets
working set ≈ what’s been used recently

assuming not in phase change…

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

62



using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

63



using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

63



using working set estimates
one idea: split memory into part of working set or not

not enough space for all working sets — stop whole program
maybe a good idea, not done by common consumer/server OSes

allocating new memory: take from least recently used memory
= not in a working set
what most current OS try to do

63



page fault for every access?
want every access to page fault? make every page invalid

…but want access to happen eventually

…which requires marking page as valid

…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

64



page fault for every access?
want every access to page fault? make every page invalid

…but want access to happen eventually

…which requires marking page as valid

…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower

64



page fault for every access?
want every access to page fault? make every page invalid

…but want access to happen eventually

…which requires marking page as valid

…which makes future accesses not fault

one solution: use debugging support to run one instruction
x86: “TF flag”

…then reset pages as invalid

okay, so I took something really slow and made it slower
64



swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

65



swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

65



swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

65



swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

65



swapping timeline

…

program A pages

…

program B pages

program A

page fault

OS

start read

evicte
d

loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in each page table

this example: only process B
real case: possibly many page tables

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

65



tracking usage: CLOCK (view 1)

page #4: last referenced bits: Y Y Y…
page #5: last referenced bits: N N N…
page #6: last referenced bits: N Y Y…
page #7: last referenced bits: Y N Y…
page #8: last referenced bits: Y Y N…
page #1: last referenced bits: Y Y Y…
page #2: last referenced bits: N N N…
page #3: last referenced bits: Y Y N…

ordered list
of physical pages

periodically:
take page from bottom of list
record current referenced bit
clear reference bit for next pass
add to top of list

66



tracking usage: CLOCK (view 2)

page #1:
last ref. bits: Y Y Y…

page #2:
last ref. bits: N N N…

page #3:
last ref. bits: N Y Y…

page #4:
last ref. bits: Y N Y…

page #5:
last ref. bits: Y Y N…

page #6:
last ref. bits: Y Y Y…

page #7:
last ref. bits: N N N…

page #8:
last ref. bits: Y Y N…

67



CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

68



CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages
initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

68



CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

68



CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

68



CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them active

count two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

68



CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

68



CLOCK-Pro: special casing for one-use pages
active list

inactive list

not ref’d?
referenced?

referenced once?
ignore (next scan)

referenced twice?
to active

evict page at bottom of inactive list
either file page referenced once or
referenced multiple times, but not recently

“new” file pages

initial guess: file pages will be used at most once,
then can be discarded

once pages become active, any reference keeps them activecount two references for inactive pages
be more reluctant

this is current Linux algorithm for file pages

68



default Linux page replacement summary

Figure: https://linux-mm.org/PageReplacementDesign 69

https://linux-mm.org/PageReplacementDesign


default Linux page replacement summary
identify inactive pages — guess: not going to be accessed soon

file pages which haven’t been accessed more than once, or
any pages which haven’t been accessed recently

some minimum threshold of inactive pages
add to inactive list in background
detecting references — scan referenced bits
(I thought Linux marked as invalid — but wrong: not on x86)
detect enough references — move to active

oldest inactive page still not used → evict that one
otherwise: give it a second chance

70



Linux cgroup limits
Linux “control groups” of processes

can set memory limits for group of proceses:

low limit: don’t ‘steal’ pages when group uses less than this
always take pages someone is using (unless no choice)

high limit: never let group use more than this
replace pages from this group before anything else

…

71



Linux cgroups
Linux mechanism: seperate processes into groups:

webserver webapp …
cgroup website

bash (shell) ls …

cgroup login

can set memory and CPU and …shares for each group

72



Linux cgroup memory limits

m
em

or
y
us
ag
e

low limit

high limit

max

0 GB

memory capacity
actively deallocate pages cgroup is using

if other processes need memory,
take from this group

do not take from this group
for other groups
(even if pages not recently used)

73



POSIX: everything is a file
the file: one interface for

devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

74



the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

75



the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

75



thrashing
what if there’s just not enough space?

for program data, files currently being accessed

always reading things from disk

causes performance collapse — disk is really slow

known as thrashing

76


	page cache
	choosing pages to evict?

	page replacement policies
	page replacement policy goals
	Belady's MIN
	the working set model
	LRU
	exercise

	implementing pure LRU

	implementing LRU-like page replacement
	tracking accesses
	accessed/dirty bit
	approximating LRU: second-chance
	example
	exercise

	approximating LRU: SEQ
	approximating LRU: CLOCK
	accessed/dirty bit (text version)
	working set and phases
	page fault for every access?
	swapping timeline
	approximating LRU: CLOCK
	CLOCK-Pro diagram
	Linux page replacement summary
	Linux cgroups
	everything is a file (full)

	thrashing

