
virtual memory 5 / devices

1

last time
page replacement metrics

optimizing hit rate
really care about throughput
other possibilities (like processor scheduling)

Belady’s MIN: ideal hit rate policy
replace what is accessed furthest in future

working set model: subset of memory in use

LRU policy: possible approximation of Belady’s MIN
…assuming working set model/temporal locality

practical approx of LRU: second chance, SEQ
key idea: check if accessed in time window

2

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

3

lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

3

non-lazy writeback
what happens when a computer loses power

how much data can you lose?

if we never run out of memory…all of it?
no changed data written back

solution: track or scan for dirty pages and writeback

example goals:
lose no more than 90 seconds of data
force writeback at file close
…

4

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

5

non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

5

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

6

exercise: which of these is LRU bad for?
code in a text editor for handling out-of-disk-space errors

initial values of the shell’s global variales

on a desktop, long movies that are too big to fit in memory and
played from beginning to end

on web server, long movies that are too big to fit in memory and
frequently downloaded by clients

files that are parsed when loaded and overwritten when saved

on web server, frequently requested HTML files

7

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

8

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

8

CLOCK-Pro: special casing for one-use pages
by default, Linux tries to handle scanning of files

one read of file data — e.g. play a video, load file into memory

basic idea: delay considering pages active until second access
second access = second scan of accessed bits/etc.

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

9

being proactive
previous assumption: load on demand

why is something loaded?
page fault
maybe because application starts

can we do better?

10

readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

11

readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

11

readahead implementation ideas?
which of these is probably best?

(a) when there’s a page fault requring reading page X of a file from
disk, read pages X and X + 1
(b) when there’s a page fault requring reading page X > 200 of a
file from disk, read the rest of the file
(c) when page fault occurs for page X of a file, read pages X
through X + 200 and proactively add all to the current program’s
page table
(d) when page fault occurs for page X of a file, read pages X
through X + 200 but don’t place pages X + 1 through X + 200 in
the page table yet

12

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?

need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

13

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

13

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

13

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?
if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

13

page cache/replacement summary
program memory + files — swapped to disk, cached in memory

mostly, assume working set model
keep (hopefully) small active set in memory
least recently used variants

special cases for non-LRU-friendly patterns (e.g. scans)
maybe more we haven’t discussed?

being proactive (writeback early, readahead, pre-evicted pages)

missing: handling non-miss-rate goals?

14

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

15

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

15

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer

read char
from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

15

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

15

recall: kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

15

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

16

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

16

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

16

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

16

recall: kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

16

recall: layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

17

ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers

18

devices as files
talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

19

example device files from a Linux desktop
/dev/snd/pcmC0D0p — audio playback

configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure

20

devices: extra operations?
read/write/mmap not enough?

audio output device — set format of audio? headphones plugged in?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

extra POSIX file descriptor operations:
ioctl (general I/O control) — device driver-specific interface
tcsetattr (for terminal settings)
fcntl
…

also possibly extra device files for same device:
/dev/snd/controlC0 to configure audio settings for
/dev/snd/pcmC0D0p, /dev/snd/pcmC0D10p, …

21

Linux example: file operations
(selected subset — table of pointers to functions)
struct file_operations {

...
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,x

size_t, loff_t *);
...
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
...
int (*mmap) (struct file *, struct vm_area_struct *);
unsigned long mmap_supported_flags;
int (*open) (struct inode *, struct file *);
...
int (*release) (struct inode *, struct file *);
...

};

22

special case: block devices
devices like disks often have a different interface

unlike normal file interface, works in terms of ‘blocks’
block size usually equal to page size

for working with page cache
read/write page at a time

23

Linux example: block device operations
struct block_device_operations {

int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page)(struct block_device *,

sector_t, struct page *, bool);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
...

};

read/write a page for a sector number (= block number)

24

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

25

device driver flow thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

25

device driver flow thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

25

xv6: device files (1)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

inode = represents file on disk

pointed to by struct file referenced by fd

26

xv6: device files (2)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

array of types of devices
special type of file on disk has index into array

“device number”
created via mknod() system call

similar scheme used on real Unix/Linux
two numbers: major + minor device number

27

xv6: console devsw
code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is the constant 1

consoleread/consolewrite: run when you read/write console

28

xv6: console devsw
code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is the constant 1

consoleread/consolewrite: run when you read/write console

28

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

29

xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){

if(myproc()−>killed){
...
return −1;

}
sleep(&input.r, &cons.lock);

}
...

}
release(&cons.lock)
...

}

if at end of buffer
r = reading location, w = writing location

put thread to sleep

30

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

31

xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

}

copy from kernel buffer
to user buffer (passed to read)

32

xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

}

copy from kernel buffer
to user buffer (passed to read)

32

xv6: console top half
wait for buffer to fill

no special work to request data — keyboard input always sent

copy from buffer

check if done (newline or enough chars), if not repeat

33

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

34

xv6: console interrupt (one case)
void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: actually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

35

xv6: console interrupt (one case)
void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: actually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

35

device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

36

xv6: console interrupt reading
kbdintr fuction actually reads from device

adds data to buffer (if room)

wakes up sleeping thread (if any)

37

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

38

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

38

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

38

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

38

connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

38

bus adaptors

processor
interrupt
controller

memory bus

other processors… actual memory

other devices
or

other bus adaptors

bus adaptor

other devices

device controller
status
read?
write?…

control registers buffers/queues

external hardware?

different bus

39

devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

40

devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

40

devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

40

device as magic memory (2)
example: display controller

write to pixels to magic memory location — displayed on screen

other memory locations control format/screen size

example: network interface

write to buffers

write “send now” signal to magic memory location — send data

read from “status” location, buffers to receive

41

what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

42

what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

42

what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

42

aside: I/O space
x86 has a “I/O addresses”

like memory addresses, but accessed with different instruction
in and out instructions

historically — and sometimes still: separate I/O bus

more recent processors/devices usually use memory addresses
no need for more instructions, buses
always have layers of bus adaptors to handle compatibility issues
other reasons to have devices and memory close (later)

43

xv6 keyboard access
two control registers:

KBSTATP: status register (I/O address 0x64)
KBDATAP: data buffer (I/O address 0x60)

// inb() runs 'in' instruction: read from I/O address
st = inb(KBSTATP);
// KBS_DIB: bit indicates data in buffer
if ((st & KBS_DIB) == 0)
return −1;

data = inb(KBDATAP); // read from data --- *clears* buffer

/* interpret data to learn what kind of keypress/release */

44

programmed I/O
“programmed I/O”: write to or read from device controller buffers
directly

OS runs loop to transfer data to or from device controller

might still be triggered by interrupt
new data in buffer to read?
device processed data previously written to buffer?

45

backup slides

46

‘fair’ page replacement
so far: page replacement about least recently used

what about sharing fairly between users?

47

sharing fairly?
process A

4MB of stack+code, 16MB of heap
shared cached 24MB file X

process B
4MB of stack+code, 16MB of heap
shared cached 24MB file X

process C
4MB of stack+code, 4MB of heap
cached 32MB file Y

process D+E
4MB of stack+code (each), 70MB of heap (each)
but all heap + most of code is shared copy-on-write

48

accounting pages
shared pages make it difficult to count memory usage

Linux cgroups accounting (mostly): last touch
count shared file pages for the process that last ‘used’ them
…as detected by page fault for page

then can set per-group (set of process) limits based on this

…and choose victim page based on limits + LRU approximation

49

Linux readahead heuristics — how much
how much to readahead?

Linux heuristic: count number of cached pages from before

guess we should read about that many more
(plus minimum/maximum to avoid extremes)

goal: readahead more when applications are using file more

goal: don’t readahead as much with low memory

50

Linux readahead heuristics — when
track “readahead windows” — pages read because of guess:

|<−−−−− async_size −−−−−−−−−|
|−−−−−−−−−−−−−−−−−−− size −−−−−−−−−−−−−−−−−−−−>|
|==================#===========================|
^start ^page marked with PG_readahead

when async_size pages left, read next chunk
marked page = detect reads to this page

one option: make page temporary invalid

idea: keep up with application, but not too far ahead

ASCII art figure: comments of Linux readahead code 51

	faster allocation: dirty writeback and free lists
	non-LRU patterns
	when is LRU bad?
	read once patterns
	readahead
	exercise?
	heuristics, generally

	page cache/replacement summary
	device driver interfaces
	review: everything is a file

	devices as files
	Linux device driver interface
	device driver flow chart
	example top/bottom half

	device interfaces generally
	backup slides
	`fair' page replacement
	Linux's readahead algorithm

