
I/O / Filesystems 1

1

last time
when LRU fails

special-case for single-access file data

readahead — handle scans by predicting reads

device driver halfs
top: from system call, use buffer, request data, wait for data
bottom: from interrupt, fill buffer, wake up

devices as magic memory

2

exercise
system is running two applications

A: reading from network
B: doing tons of computation

timeline:
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

exercise 1: how many kernel/user mode switches?

exercise 2: how many context switches?

3

how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?1 2 3 4? 5? 6? 7? 8?

4

how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?

1 2 3 4? 5? 6? 7? 8?

4

how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?

1 2 3 4? 5? 6? 7? 8?

4

how many context switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2

5

how many context switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2

5

direct memory access (DMA)

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller

external hardware?

observation: devices can read/write memory

can have device copy data to/from memory

6

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

7

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

7

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

7

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

7

direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

7

direct memory access (DMA)
much faster, e.g., for disk or network I/O

avoids having processor run a loop to copy data
OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)
OS specifies physical address to use…
instead of reading from device controller

8

direct memory access (DMA)
much faster, e.g., for disk or network I/O

avoids having processor run a loop to copy data
OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)
OS specifies physical address to use…
instead of reading from device controller

8

OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?

i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

9

OS puts data where it wants
so far: where it wants is the device driver’s buffer
seems like OS could also put it directly where application wants it?

i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

9

OS puts data where it wants
so far: where it wants is the device driver’s buffer
seems like OS could also put it directly where application wants it?

i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

9

devices summary
device controllers connected via memory bus

usually assigned physical memory addresses
sometimes separate “I/O addresses” (special load/store instructions)

controller looks like “magic memory” to OS
load/store from device controller registers like memory
setting/reading control registers can trigger device operations

two options for data transfer
programmed I/O: OS reads from/writes to buffer within device controller
direct memory access (DMA): device controller reads/writes normal
memory

10

the FAT filesystem
FAT: File Allocation Table

probably simplest widely used filesystem (family)

named for important data structure: file allocation table

11

FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25

12

FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25
12

FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

13

FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

13

FAT: the file allocation table
big array on disk, one entry per cluster

each entry contains a number — usually “next cluster”
cluster num. entry value
0 4
1 7
2 5
3 1434… …
1000 4503
1001 1523… …

14

FAT: reading a file (1)
get (from elsewhere) first cluster of data

linked list of cluster numbers
next pointers? file allocation table entry for cluster

special value for NULL (-1 in this example; maybe different in real FAT)
cluster
num.

entry value
… …
10 14
11 23
12 54
13 -1 (end mark)
14 15
15 13
… …

file starting at cluster 10 contains data in:
cluster 10, then 14, then 15, then 13

15

FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

16

FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

16

FAT: reading a file (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
21 6
8 7
9 8
-1 (end mark) 9
14 10
23 11
54 12
-1 (end mark) 15
15 14
13 15
20 16
… …

file allocation table

block 0

block 1
block 2

block 3

block 0
block 1
block 2

16

FAT: reading files
to read a file given it’s start location

read the starting cluster X

get the next cluster Y from FAT entry X

read the next cluster

get the next cluster from FAT entry Y

…

until you see an end marker

17

start locations?
really want filenames

stored in directories!

in FAT: directory is a file, but its data is list of:

(name, starting location, other data about file)

18

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

19

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

19

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

19

finding files with directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

10

clu
st

er
nu

m
be

r

the disk

dir pt 0

dir pt 1

file “index.html” starting at cluster 10, 12792 bytes
file “assignments.html” starting at cluster 17, 4312 bytes
…
directory “examples” starting at cluster 20
unused entry
…
file “info.html” starting at cluster 50, 23789 bytes

index.html pt 0
index.html pt 1

index.html pt 2
index.html pt 3

(bytes 0-4095 of index.html)

(bytes 4096-8191 of index.html)

(bytes 8192-12287 of index.html)
(bytes 12278-12792 of index.html)
(unused bytes 12792-16384)

19

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

20

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

20

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

20

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

20

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

20

FAT directory entry box = 1 byte

entry for README.TXT, 342 byte file, starting at cluster 0x104F4

'R' 'E' 'A' 'D' 'M' 'E' '␣''␣' 'T' 'X' 'T' 0x00

filename + extension (README.TXT) attrs
directory?
read-only?
hidden?
…0x9C0xA10x200x7D0x3C0x7D0x3C0x010x000xEC0x620x76

creation date + time
(2010-03-29 04:05:03.56)

last access
(2010-03-29)

cluster #
(high bits)

last write
(2010-03-22 12:23:12)

0x3C0xF40x040x560x010x000x00 'F' 'O' 'O' …
last

write
con’t

cluster #
(low bits)

file size
(0x156 bytes)

next directory entry…

32-bit first cluster number split into two parts
(history: used to only be 16-bits)

8 character filename + 3 character extension
longer filenames? encoded using extra directory entries
(special attrs values to distinguish from normal entries)

8 character filename + 3 character extension
history: used to be all that was supported

attributes: is a subdirectory, read-only, …
also marks directory entries used to hold extra filename data

convention: if first character is 0x0 or 0xE5 — unused
0x00: for filling empty space at end of directory
0xE5: ‘hole’ — e.g. from file deletion

20

aside: FAT date encoding
seperate date and time fields (16 bits, little-endian integers)

bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour

bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

21

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

22

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

22

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

22

FAT directory entries (from C)
struct __attribute__((packed)) DirEntry {
uint8_t DIR_Name[11]; // short name
uint8_t DIR_Attr; // File attribute
uint8_t DIR_NTRes; // set value to 0, never change this
uint8_t DIR_CrtTimeTenth; // millisecond timestamp for file creation time
uint16_t DIR_CrtTime; // time file was created
uint16_t DIR_CrtDate; // date file was created
uint16_t DIR_LstAccDate; // last access date
uint16_t DIR_FstClusHI; // high word of this entry's first cluster number
uint16_t DIR_WrtTime; // time of last write
uint16_t DIR_WrtDate; // dat eof last write
uint16_t DIR_FstClusLO; // low word of this entry's first cluster number
uint32_t DIR_FileSize; // file size in bytes

};

GCC/Clang extension to disable padding
normally compilers add padding to structs
(to avoid splitting values across cache blocks or pages)

8/16/32-bit unsigned integer
use exact size that’s on disk
just copy byte-by-byte from disk to memory
(and everything happens to be little-endian)

why are the names so bad (“FstClusHI”, etc.)?
comes from Microsoft’s documentation this way

22

nested directories
foo/bar/baz/file.txt

read root directory entries to find foo

read foo’s directory entries to find bar

read bar’s directory entries to find baz

read baz’s directory entries to find file.txt

23

the root directory?
but where is the first directory?

24

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

25

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

25

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

25

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

25

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT

backup FAT

root directory
starts here

reserved sectors

25

FAT disk header

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
(OS startup data) …

bytes per sector 512
reserved sectors 5

sectors per cluster 4
… …

total sectors 4096
FAT size 11

Number of FATs 2
root directory cluster 10

… …

filesystem header

FAT
backup FAT

root directory
starts here

reserved sectors

25

filesystem header
fixed location near beginning of disk

determines size of clusters, etc.

tells where to find FAT, root directory, etc.

26

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation tablenumber of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

27

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation tablenumber of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

27

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation table

number of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

27

FAT header (C)
struct __attribute__((packed)) Fat32BPB {
uint8_t BS_jmpBoot[3]; // jmp instr to boot code
uint8_t BS_oemName[8]; // indicates what system formatted this field, default=MSWIN4.1
uint16_t BPB_BytsPerSec; // count of bytes per sector
uint8_t BPB_SecPerClus; // no.of sectors per allocation unit
uint16_t BPB_RsvdSecCnt; // no.of reserved sectors in the reserved region of the volume starting at 1st sector
uint8_t BPB_NumFATs; // count of FAT datastructures on the volume
uint16_t BPB_rootEntCnt; // count of 32-byte entries in root dir, for FAT32 set to 0
uint16_t BPB_totSec16; // total sectors on the volume
uint8_t BPB_media; // value of fixed media

....
uint16_t BPB_ExtFlags; // flags indicating which FATs are active

size of sector (in bytes) and size of cluster (in sectors)

space before file allocation table

number of copies of file allocation table
extra copies in case disk is damaged
typically two with writes made to both

27

FAT: creating a file
add a directory entry

choose clusters to store file data (how???)

update FAT to link clusters together

28

FAT: creating a file
add a directory entry

choose clusters to store file data (how???)

update FAT to link clusters together

28

FAT: free clusters
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 21
0 (free) 22
-1 (end) 23
0 (free) 24
35 25
48 26
0 (free) 27
… …

file allocation table

29

FAT: writing file data
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

30

FAT: replacing unused directory entry
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
unused entry“new.txt”, cluster 21, size …
…

directory’s data

31

FAT: extending directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

directory’s data (first cluster)

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

directory’s data (new second cluster)

32

FAT: exercise
C.txt is file in directory B which is in directory A
consider the following items on disk:

[a] FAT entries for A
[b] FAT entries for B
[c] FAT entries for C.txt
[d] data clusters for A
[e] data clusters for B
[f] data clusters for C.txt

Ignoring modification timestamp updates,
which of the above may be modified to:

1) assuming directores existed previously, create C.txt
2) truncate C.txt, making it have size 0 bytes (assume prev. not empty)
3) move C.txt from directory B into directory A

33

FAT: deleting files
reset FAT entries for file clusters to free (0)

write “unused” character in filename for directory entry
maybe rewrite directory if that’ll save space?

34

exercise
say FAT filesystem with:

4-byte FAT entries
32-byte directory entries
2048-byte clusters

how many FAT entries+clusters (outside of the FAT) is used to
store a directory of 200 30KB files?

count clusters for both directory entries and the file data

how many FAT entries+clusters is used to store a directory of 2000
3KB files?

35

FAT pros and cons?

36

backup slides

37

IOMMUs
typically, direct memory access requires using physical addresses

devices don’t have page tables
need contiguous physical addresses (multiple pages if buffer >page size)
devices that messes up can overwrite arbitrary memory

recent systems have an IO Memory Management Unit
“pagetables for devices”
allows non-contiguous buffers
enforces protection — broken device can’t write wrong memory location
helpful for virtual machines

38

disk scheduling
schedule I/O to the disk

schedule = decide what read/write to do next
by OS: what to request from disk next?
by controller: which OS request to do next?

typical goals:

minimize seek time

don’t starve requiests

39

disk scheduling
schedule I/O to the disk

schedule = decide what read/write to do next
by OS: what to request from disk next?
by controller: which OS request to do next?

typical goals:

minimize seek time

don’t starve requiests

39

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

40

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

40

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

40

shortest seek time first
time = disk I/O request

disk head

inside of disk

outside of disk

some requests starved
potentially forever if enough other reads

missing consideration: rotational latency
modification called shortest positioning time first

40

disk scheduling
schedule I/O to the disk

schedule = decide what read/write to do next
by OS: what to request from disk next?
by controller: which OS request to do next?

typical goals:

minimize seek time

don’t starve requiests

41

one idea: SCAN
time = disk I/O request

disk head

inside of disk

outside of disk
42

another idea: C-SCAN (C=circular)
time = disk I/O request

disk head

inside of disk

outside of disk

scan in single direction
maybe more fair than SCAN
(doesn’t favor middle of disk)

maybe disk has fast way of ‘resetting’ head to outside?

43

another idea: C-SCAN (C=circular)
time = disk I/O request

disk head

inside of disk

outside of disk

scan in single direction
maybe more fair than SCAN
(doesn’t favor middle of disk)

maybe disk has fast way of ‘resetting’ head to outside?

43

another idea: C-SCAN (C=circular)
time = disk I/O request

disk head

inside of disk

outside of disk

scan in single direction
maybe more fair than SCAN
(doesn’t favor middle of disk)

maybe disk has fast way of ‘resetting’ head to outside?

43

some disk scheduling algorithms (text)
SSTF : take request with shortest seek time next

subject to starvation — stuck on one side of disk
could also take into account rotational latency — yields SPTF

shortest positioning time first

SCAN/elevator : move disk head towards center, then away
let requests pile up between passes
limits starvation; good overall throughput

C-SCAN: take next request closer to center of disk (if any)
variant of scan that moves head in one direction
avoids bias towards center of disk

44

	devices
	exercise
	direct-memory access
	summary

	the FAT filesystem
	intro and file allocation table
	reading a file
	directories are files
	header for the disk
	allocating files
	exercise: space used (one file)
	deleting files
	exercise: space used (multiple files)

	pros and mostly cons of FAT
	backup slides
	IOMMUs
	disk scheduing

