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last time
direct memory access

write directy to device driver buffers
OS supplies physical address
maybe avoid more copies if really clever?

disk interface: sectors

FAT filesystem
dividing disk into clusters
files as linked list of cluster numbers
file alloc table: linked list next pointers + free cluster info
directory entries: file info + first clutser number
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on extension requests
there was already a paging assignment extension…

and I know several students started the assignment with enough time…
don’t want students to play “guess what the real due date is” when
making plans

I wish we had more effective OH help, but our general assumption is
that you should be able complete the assignment without it

…and that you won’t start working in the last day or so to give time for
getting answers to questions…

for particular difficulty to work assignment, case-by-case extensions
(email or submit on kytos)

computer/Internet availability issues, sudden moves, illness, …

late policy still applies (3, 5 days)
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on office hours
hopefully we’re learning to be more efficient in virtual OH

e.g. switching between students to avoid spending too much time at
once

please help us make them efficient:

good “task” descriptions may let us group students together for help

simplify your question: narrow down/simplify test cases
simplify your question: figure out what of your code is
running/doing

(via debug prints, GDB, …)

use OH time other than in the last 24 hours before the due time
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note on FAT assignment
read from disk image (file with contents of hard drive/SSD)

use real specs from Microsoft

implement FAT32 version; specs describe several variants

mapping from cluster numbers to location on disk different

end-of-file in FAT could be values other than -1
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why hard drives?
what filesystems were designed for

currently most cost-effective way to have a lot of online storage

solid state drives (SSDs) imitate hard drive interfaces
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hard drives
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plattersstack of flat discs
(only top visible)

spins when operating

headsread/write
magnetic signals

on platter surfaces

arm
rotates to position heads

over spinning platters
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sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data
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disk latency components
queue time — how long read waits in line?

depends on number of reads at a time, scheduling strategy

disk controller/etc. processing time

seek time — head to cylinder

rotational latency — platter rotate to sector

transfer time
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cylinders and latency
cylinders closer to edge of disk are faster (maybe)

less rotational latency
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sector numbers
historically: OS knew cylinder/head/track location

now: opaque sector numbers
more flexible for hard drive makers
same interface for SSDs, etc.

typical pattern: low sector numbers = probably closer to edge
(faster?)

typical pattern: adjacent sector numbers = adjacent on disk

actual mapping: decided by disk controller
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OS to disk interface
disk takes read/write requests

sector number(s)
location of data for sector
modern disk controllers: typically direct memory access

can have queue of pending requests

disk processes them in some order
OS can say “write X before Y”
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hard disks are unreliable
Google study (2007), heavily utilized cheap disks

1.7% to 8.6% annualized failure rate
varies with age
≈ chance a disk fails each year
disk fails = needs to be replaced

9% of working disks had reallocated sectors
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bad sectors
modern disk controllers do sector remapping

part of physical disk becomes bad — use a different one
disk uses error detecting code to tell data is bad
similar idea to storing + checking hash of data

this is expected behavior

maintain mapping (special part of disk, probably)
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queuing requests
recall: multiple active requests

queue of reads/writes
in disk controller and/or OS

disk is faster for adjacent/close-by reads/writes
less seek time/rotational latency

disk controller and/or OS may need schedule requests
group nearby requests together

as user of disk: better to request multiple things at a time

15



disk performance and filesystems
filesystem can…

do contiguous or nearby reads/writes
bunch of consecutive sectors much faster to read
nearby sectors have lower seek/rotational delay

start a lot of reads/writes at once
avoid reading something to find out what to read next
array of sectors better than linked list
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solid state disk architecture
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flash
no moving parts

no seek time, rotational latency

can read in sector-like sizes (“pages”) (e.g. 4KB or 16KB)

write once between erasures

erasure only in large erasure blocks (often 256KB to megabytes!)

can only rewrite blocks order tens of thousands of times
after that, flash starts failing
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SSDs: flash as disk
SSDs: implement hard disk interface for NAND flash

read/write sectors at a time
sectors much smaller than erasure blocks
sectors sometimes smaller than flash ‘pages’
read/write with use sector numbers, not addresses
queue of read/writes

need to hide erasure blocks
trick: block remapping — move where sectors are in flash

need to hide limit on number of erases
trick: wear levening — spread writes out
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block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32
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block remapping
controller contains mapping: sector → location in flash

on write: write sector to new location

eventually do garbage collection of sectors
if erasure block contains some replaced sectors and some current sectors…
copy current blocks to new locationt to reclaim space from replaced
sectors

doing this efficiently is very complicated

SSDs sometimes have a ‘real’ processor for this purpose
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exercise
Assuming a FAT-like filesystem on an SSD, which of the following
are likely to be stored in the same (or very small number of) erasure
block?

[a] the clusters of a set of log file all in one directory written continuously
over months by a server and assigned a contiguous range of cluster
numbers
[b] the data clusters of a set of images, copied all at once from a camera
and assigned a variety of cluster numbers
[c] all the entires of the FAT (assume the OS only rewrites a sector of
the FAT if it is changed)
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SSD performance
reads/writes: sub-millisecond

contiguous blocks don’t really matter

can depend a lot on the controller
faster/slower ways to handle block remapping

writing can be slower, especially when almost full
controller may need to move data around to free up erasure blocks
erasing an erasure block is pretty slow (milliseconds?)
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extra SSD operations
SSDs sometimes implement non-HDD operations

on operation: TRIM

way for OS to mark sectors as unused/erase them

SSD can remove sectors from block map
more efficient than zeroing blocks
frees up more space for writing new blocks
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aside: future storage
emerging non-volatile memories…

slower than DRAM (“normal memory”)

faster than SSDs

read/write interface like DRAM but persistent

capacities similar to/larger than DRAM
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xv6 filesystem
xv6’s filesystem similar to modern Unix filesytems

better at doing contiguous reads than FAT

better at handling crashes

supports hard links

divides disk into blocks instead of clusters

file block numbers, free blocks, etc. in different tables
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xv6 disk layout
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the disk
(boot block)
super block

log

inode array

free block map

data blocks

superblock — “header”
struct superblock {

uint size;
// Size of file system image (blocks)

uint nblocks;
// # of data blocks

uint ninodes;
// # of inodes

uint nlog;
// # of log blocks

uint logstart;
// block # of first log block

uint inodestart;
// block # of first inode block

uint bmapstart;
// block # of first free map block

};

nblocks

ninodes
inode size

←logstart

←inodestart

←bmapstart

inode — file information
struct dinode {

short type; // File type
// T_DIR, T_FILE, T_DEV

short major; short minor; // T_DEV only

short nlink;
// Number of links to inode in file system

uint size; // Size of file (bytes)
uint addrs[NDIRECT+1];
// Data block addresses

};

location of data as block numbers:
e.g. addrs[0] = 11; addrs[1] = 14;
special case for larger files

free block map — 1 bit per data block
1 if available, 0 if used

allocating blocks: scan for 1 bits
contiguous 1s — contigous blocks

what about finding free inodes
xv6 solution: scan for type = 0

typical Unix solution: separate free inode map
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xv6 directory entries
struct dirent {
ushort inum;
char name[DIRSIZ];

};

inum — index into inode array on disk

name — name of file or directory

each directory reference to inode called a hard link
multiple hard links to file allowed!
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xv6 allocating inodes/blocks
need new inode or data block: linear search

simplest solution: xv6 always takes the first one that’s free
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xv6 inode: direct and indirect blocks
addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs

…

data blocks

…

indirect block of
direct blocks
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xv6 file sizes
512 byte blocks

2-byte block pointers: 256 block pointers in the indirect block

256 blocks = 131072 bytes of data referenced

12 direct blocks @ 512 bytes each = 6144 bytes

1 indirect block @ 131072 bytes each = 131072 bytes

maximum file size = 6144 + 131072 bytes
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Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection
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double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer
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ext2 indirect blocks
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?
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ext2 indirect blocks (2)
12 direct block pointers

1 indirect block pointer

1 double indirect block pointer

1 triple indirect block pointer

exercise: if 1K (210 byte) blocks, 4 byte block pointers,
how does OS find byte 215 of the file?

(1) using indirect pointer or double-indirect pointer in inode?
(2) what index of block pointer array pointed to by pointer in inode?
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filesystem reliability
a crash happens — what’s the state of my filesystem?
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hard disk atomicity
interrupt a hard drive write?

write whole disk sector or corrupt it

hard drive stores checksum for each sector

write interrupted? — checksum mismatch
hard drive returns read error
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reliability issues
is the data there?

can we find the file, etc.?

is the filesystem in a consistent state?
do we know what blocks are free?
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backup slides
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erasure coding with xor
storing 2 bits xy using 3

choose x, y, z = x⊕ y

recover x: x = y ⊕ z

recover y: y = x⊕ z

recover z: y = x⊕ y
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mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)
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RAID 4 parity

disk 1 disk 2 disk 3
A1: sector 0 A2: sector 1 Ap: A1 ⊕ A2
B1: sector 2 B2: sector 3 Bp: B1 ⊕B2
… … …

⊕ — bitwise xor

Ap = A1 ⊕ A2
A1 = Ap ⊕ A2
A2 = A1 ⊕ Ap

can compute contents of any disk!

exercise: how to replace sector 3 (B2)with new value?
how many writes? how many reads?
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RAID 4 parity (more disks)
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3 sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 B3: sector 5 Bp: B1⊕B2⊕B3
… … …

Ap = A1 ⊕ A2 ⊕ A3
A1 = Ap ⊕ A2 ⊕ A3
A2 = A1 ⊕ Ap ⊕ A3
A3 = A1 ⊕ A2 ⊕ Ap

can still compute contents of any disk!

exercise: how to replace sector 3 (B1) with new value now?
how many writes? how many reads?
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RAID 5 parity
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

45



RAID 5 parity
disk 1 disk 2 disk 3 disk 4
A1: sector 0 A2: sector 1 A3: sector 2 Ap: A1⊕A2⊕A3
B1: sector 3 B2: sector 4 Bp: B1⊕B2⊕B3 B3:sector 5
C1: sector 6 Cp: C1⊕C2⊕C3 C2: sector 7 C3: sector 8
… … …

spread out parity updates across disks
so each disk has about same amount of work

45



more general schemes
RAID 6: tolerate loss of any two disks

can generalize to 3 or more failures
justification: takes days/weeks to replace data on missing disk
…giving time for more disks to fail

probably more in CS 4434?

but none of this addresses consistency
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RAID-like redundancy
usually appears to filesystem as ‘more reliable disk’

hardware or software layers to implement extra copies/parity

some filesystems (e.g. ZFS) implement this themselves
more flexibility — e.g. change redundancy file-by-file
ZFS combines with its own checksums — don’t trust disks!
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RAID: missing piece
what about losing data while blocks being updated

very tricky/failure-prone part of RAID implementations
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efficient seeking with extents
suppose a file has long list of extents

how to seek to byte X?

solution: store a (search) tree
ext4: each node stores key=minimum file index it covers
ext4: each node stores extent value=(start data block+size)
ext4: each node has pointer (disk block) to its children
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non-binary search trees
7 16

1 2 5 6 9 12 13 18 21

each node can be one block on disk
choose number of entries in node based on block size

avoid large or random accesses to disk and linear searches
can do binary search within a node

algorithms for adding to tree while keeping it balanced
similar idea to AVL trees
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using trees on disk
linear search to find extent at offset X

store index by offset of extent within file

linear search to find file in directory?
index by filename

both problems — solved with non-binary tree on disk
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sparse files
the xv6 filesystem and ext2 allow sparse files

“holes” with no data blocks
#include <stdio.h>
int main(void) {

FILE *fh = fopen("sparse.dat", "w");
fseek(fh, 1024 * 1024, SEEK_SET);
fprintf(fh, "Some␣data␣here\n");
fclose(fh);

}

sparse.dat is 1MB file which uses a handful of blocks

most of its block pointers are some NULL (‘no such block’) value
including some direct and indirect ones
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xv6 inode: sparse file
addrs[0]
addrs[1]

…

addrs[11]
addrs[12]

addrs data blocks
data for bytes 512-1024

data for bytes 6656-7168

data for bytes 7680-8192

data for bytes 8192-8704

…

block of
indirect blocks

(none)

(none)
(none)

(none)
(none)

(none)

(none)

(none)
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hard links
xv6/ext2 directory entries: name, inode number

all non-name information: in the inode itself

each directory entry is called a hard link

a file can have multiple hard links
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ln
$ echo "Text A." >test.txt
$ ln test.txt new.txt
$ cat new.txt
Text A.
$ echo "Text B." >new.txt
$ cat new.txt
Text B.
$ cat test.txt
Text B.

ln OLD NEW — NEW is the same file as OLD
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link counts
xv6 and ext2 track number of links

zero — actually delete file

also count open files as a link

trick: create file, open it, delete it

file not really deleted until you close it
…but doesn’t have a name (no hard link in directory)
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link, unlink
ln OLD NEW calls the POSIX link() function

rm FOO calls the POSIX unlink() function
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soft or symbolic links
POSIX also supports soft/symbolic links

reference a file by name

special type of file whose data is the name
$ echo "This is a test." >test.txt
$ ln −s test.txt new.txt
$ ls −l new.txt
lrwxrwxrwx 1 charles charles 8 Oct 29 20:49 new.txt −> test.txt
$ cat new.txt
This is a test.
$ rm test.txt
$ cat new.txt
cat: new.txt: No such file or directory
$ echo "New contents." >test.txt
$ cat new.txt
New contents.
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caching in the controller
controller often has a DRAM cache

can hold things controller thinks OS might read
e.g. sectors ‘near’ recently read sectors
helps hide sector remapping costs?

can hold data waiting to be written
makes writes a lot faster
problem for reliability
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