
redo logging (finish) / distributed systems 1

1



last time (1)
block groups — keep related data+metadata in one part of disk

preference, not requirement — exceptions can span multiple block groups
divide up block/inode indices between block groups

small files: fragments — dividing blocks into pieces

large files: extents — ranges instead of single block pointers

cost of fragments and extents
complicate block allocation, free block tracking

2



last time (2)
redo logging

goal: perform multiple updates “at once” (consistency!)

record intention in log
record committing to that intention

at this point: operation “done” for application’s perspective
(i.e. OS won’t forget about the operation even if crash)

actually do what was intended
on crash: redo what was intended

may or may not be repeating operations

eventually: clear log of fully complete operations
3



redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

4



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 =

C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

4



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

4



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

4



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual diskwhen everything is written, can overwrite log

4



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual disk

when everything is written, can overwrite log

4



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

4



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

4



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

5



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

5



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

5



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

5



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

5



idempotency
logged operations should be okay to do twice = idempotent

good example: set inode link count to 4

bad example: increment inode link count

good example: overwrite inode number X with new value
as long as last committed inode value in log is right…

bad example: allocate new inode with particular contents

good example: overwrite data block with new value

bad example: append data to last used block of file

6



redo logging summary
write intended operation to the log

before ever touching ‘real’ data
in format that’s safe to do twice

write marker to commit to the log
if exists, the operation will be done eventually

actually update the real data

7



redo logging and filesystems
filesystems that do redo logging are called journalling filesystems

8



exercise (1)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging, ext2-like filesystem with
1KB blocks, 4B block pointers

part 1: what’s modified?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log

9



exercise (2)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging

part 2: crash happens after writing:
log entries for entire operation
free block map changes
indirect blocks for file

…what is written after restart as part of this operation?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log 10



lots of writing?
entire log can be written sequentially

ideal for hard disk performance
also pretty good for SSDs

no waiting for ‘real’ updates
application can proceed while updates are happening
files will be updated even if system crashes

often better for performance!

11



degrees of consistency
not all journalling filesystem use redo logging for everything

some use it only for metadata operations

some use it for both metadata and user data

only metadata: avoids lots of duplicate writing

metadata+user data: integrity of user data guaranteed

12



distributed systems
multiple machines working together to perform a single task

called a distributed system

13



some distibuted systems models

client/server

server

client
1

client
2

client
N-1

client
N

…

node
1

node
2 node

3node
4

node
5

node
6

node
7

peer-to-peer

14



client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

15



client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

15



client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

15



layers of servers?
ad

server

database
server

application
server

web
server

web
client

web server is also application server’s client

16



example: Wikipedia architecture

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 17

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png


example: Wikipedia architecture (zoom)

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 18

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png


peer-to-peer
no always-on server everyone knows about

hopefully, no one bottleneck — “scalability”

any machine can contact any other machine
every machine plays an approx. equal role?

set of machines may change over time

19



why distributed?
multiple machine owners collaborating

delegation of responsiblity to other entity
put (part of) service “in the cloud”

combine many cheap machines to replace expensive machine

easier to add incrementally

redundancy — one machine can fail and system still works?

20



exercise
which are likely advantages of client/server model over
peer-to-peer?

[A] easier to make whole system work despite failure of any machine

[B] easier to handle most machines being offline a majority of the
time

[C] better suited to a mix of a few very big/high-performance and
many small/low-performance machines

21



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

22



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

22



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

22



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

22



what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

23



what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

23



extension: conections
connections: two-way channel for messages
extra operations: connect, accept

machine
A

machine
B

B: open connection to A?

Conn = Connect(B)

A: connection to B OK!

Conn = Accept()

B: (A, “2 + 2 = ?”)

Send(Conn, “2 + 2 = ?”)

“2 + 2 = ?” = Recv(Conn)

A: (B, “4”)

Send(Conn, “4”)

“4” = Recv(Conn) 24



connections versus pipes
connections look kinda like two-direction pipes

in fact, in POSIX will have the same API:

each end gets file descriptor representing connection

can use read() and write()

25



connections over mailboxes
real Internet: mailbox-style communication

send packets to particular mailboxes
no gaurentee on order, when received
no relationship between

connections implemented on top of this

full details: take networking (CS/ECE 4457)

26



connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

28



names and addresses
name address
logical identifier location/how to locate
hostname www.virginia.edu IPv4 address 128.143.22.36
hostname mail.google.com IPv4 address 216.58.217.69
hostname mail.google.com IPv6 address 2607:f8b0:4004:80b::2005

filename /home/cr4bd/NOTES.txt inode# 120800873
and device 0x2eh/0x46d

variable counter memory address 0x7FFF9430

service name https port number 443

29



hostnames
typically use domain name system (DNS) to find machine names

maps logical names like www.virginia.edu
chosen for humans
hierarchy of names

…to addresses the network can use to move messages
numbers
ranges of numbers assigned to different parts of the network
network routers knows “send this range of numbers goes this way”

30



DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31



DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31



DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31



DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31



DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

31



connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

32



IPv4 addresses
32-bit numbers

typically written like 128.143.67.11
four 8-bit decimal values separated by dots
first part is most significant
same as 128 · 2563 + 143 · 2562 + 67 · 256 + 11 = 2 156 782 459

organizations get blocks of IPs
e.g. UVa has 128.143.0.0–128.143.255.255
e.g. Google has 216.58.192.0–216.58.223.255 and
74.125.0.0–74.125.255.255 and 35.192.0.0–35.207.255.255

33



selected special IPv4 addresses
127.0.0.0 — 127.255.255.255 — localhost

AKA loopback
the machine we’re on
typically only 127.0.0.1 is used

192.168.0.0–192.168.255.255 and
10.0.0.0–10.255.255.255 and
172.16.0.0–172.31.255.255

“private” IP addresses
not used on the Internet
commonly connected to Internet with network address translation
also 100.64.0.0–100.127.255.255 (but with restrictions)

169.254.0.0-169.254.255.255
link-local addresses — ‘never’ forwarded by routers

34



network address translation
IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for machines

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

35



IPv6 addresses
IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)

strings of 0s represented by double-colons (::)

typically given to users in blocks of 280 or 264 addresses
no need for address translation?

2607:f8b0:400d:c00::6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400d0c0000000000000006aSIXTEEN

36



selected special IPv6 addresses
::1 = localhost

anything starting with fe80 = link-local addresses
never forwarded by routers

37



IPv4 addresses and routing tables

router
network 1 network 2

network 3

if I receive data for… send it to…
128.143.0.0—128.143.255.255 network 1
192.107.102.0–192.107.102.255 network 1
… …
4.0.0.0–7.255.255.255 network 2
64.8.0.0–64.15.255.255 network 2
… …
anything else network 3

38



connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

39



port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers

think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

40



port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

40



port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

40



protocols
protocol = agreement on how to comunicate

syntax (format of messages, etc.)
e.g. mailbox model: where does address go?
e.g. connection: where does return address go?

semantics (meaning of messages — actions to take, etc.)
e.g. connection: when to consider connection created?

41



human protocol: telephone
caller: pick up phone
caller: check for service
caller: dial
caller: wait for ringing

callee: “Hello?”
caller: “Hi, it’s Casey…”

callee: “Hi, so how about …”
caller: “Sure, …”
… …

callee: “Bye!”
caller: “Bye!”
hang up hang up

42



layered protocols
IP: protocol for sending data by IP addresses

mailbox model
limited message size

UDP: send datagrams built on IP
still mailbox model, but with port numbers

TCP: reliable connections built on IP
adds port numbers
adds resending data if error occurs
splits big amounts of data into many messages

HTTP: protocol for sending files, etc. built on TCP

43



other notable protocols (transport layer)
TLS: Transport Layer Security — built on TCP

like TCP, but adds encryption + authentication

SSH: secure shell (remote login) — built on TCP

SCP/SFTP: secure copy/secure file transfer — built on SSH

HTTPS: HTTP, but over TLS instead of TCP

FTP: file transfer protocol

…

44



sockets
socket: POSIX abstraction of network I/O queue

any kind of network
can also be used between processes on same machine

a kind of file descriptor

45



connected sockets
sockets can represent a connection

act like bidirectional pipe
client server

(setup connection / get fds)
write(fd, buffer, size)

read(fd, buffer, size)

write(fd, buffer, size)

read(fd, buffer, size)

46



echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 47



echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 47



echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 47



sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

48



sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

48



sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

48



sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

48



sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

48



connections in TCP/IP
on network: connection identified by 5-tuple

used by OS to lookup “where is the file descriptor?”

(protocol=TCP, local IP addr., local port, remote IP addr., remote port)

both ends always have an address+port

what is the IP address, port number? set with bind() function
typically always done for servers, not done for clients
system will choose default if you don’t

49



connections on my desktop
cr4bd@reiss−t3620
: /zf14/cr4bd ; netstat −−inet −−inet6 −−numeric
Active Internet connections (w/o servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 128 . 143 . 67 . 91 : 49202 1 2 8 . 1 4 3 . 6 3 . 3 4 : 2 2 ESTABLISHED
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 8 0 3 128 . 143 . 67 . 236 : 2049 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 50292 1 2 8 . 1 4 3 . 6 7 . 2 2 6 : 2 2 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54722 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 52002 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 7 3 2 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 40664 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54098 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 49302 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 50236 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 2 2 1 7 2 . 2 7 . 9 8 . 2 0 : 4 9 5 6 6 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 51000 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 1 2 7 . 0 . 0 . 1 : 6 3 1 ESTABLISHED
tcp 0 0 1 2 7 . 0 . 0 . 1 : 6 3 1 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 ESTABLISHED

50



client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

51



client/server flow (one connection at a time)

create+configure
server socket

setup pair
of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

51



client/server flow (one connection at a time)

create+configure
server socket

setup pair
of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

51



client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

51



client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

51



client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

51



client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

51



client/server flow (multiple connections)

spawn new process (fork)
or thread per connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

52



backup slides

53



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

54



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

54



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

54



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

54



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

54



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

54



the xv6 journal

number of blocks = N= 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1 write changed blocks

2 write log header
(commits transaction)

3 write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

54



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

55



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

55



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

56



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

57



limiting log size
once transaction is written to real data, can discard

sometimes called “garbage collecting” the log

may sometimes need to block to free up log space
perform logged updates before adding more to log

hope: usually log cleanup happens “in the background”

58



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

59



reading and writing at once
so far assumption: alternate between reading+writing

sufficient for FTP assignment
how many protocols work

“half-duplex”

don’t have to use sockets this way, but tricky

threads: one reading thread, one writing thread OR

event-loop: use non-blocking I/O and select()/poll()/etc. functions
non-blocking I/O setup with fcntl() function
non-blocking write() fills up buffer as much as possible, then returns
non-blocking read() returns what’s in buffer, never waits for more

60



mounting filesystems
Unix-like system

root filesystem appears as /

other filesystems appear as directory
e.g. lab machines: my home dir is in filesystem at /net/zf15

directories that are filesystems look like normal directories
/net/zf15/.. is /net (even though in different filesystems)

61



mounts on a dept. machine
/dev/sda1 on / type ext4 (rw,errors=remount−ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
...
/dev/sda3 on /localtmp type ext4 (rw)
...
zfs1:/zf2 on /net/zf2 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf19 on /net/zf19 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
zfs4:/sw on /net/sw type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf14 on /net/zf14 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
...

62



kernel FS abstractions
Linux: virtual file system API

object-oriented, based on FFS-style filesystem

to implement a filesystem, create object types for:
superblock (represents “header”)
inode (represents file)
dentry (represents cached directory entry)
file (represents open file)

common code handles directory traversal
and caches directory traversals

common code handles file descriptors, etc.
63



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

64



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

64



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

64



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

64



connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

64



connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

65



connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

65



connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

65



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

66



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

66



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

66



connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

66



connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

67



aside: on server port numbers
Unix convention: must be root to use ports 0–1023

root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

68


	redo logging, continued
	redo logging
	exercise
	redo logging: lots of writing?
	degrees of consistency

	distributed systems/networks intro
	introduction, models, goals
	exercise


	communication models
	names and addresses
	hostnames
	DNS
	IPv4 addresses
	IPv6 addresses
	routing
	port numbers
	protocols / TCP / UDP

	sockets
	introduction / read-write flow
	connection setup outline
	server flow (simple)
	server flow (multiple connections)

	backup slides
	the xv6 FS journal
	redo logging overhead/GC
	simultaneous read/write
	mounts
	connection setup code: client
	connection setup code: server
	small port number note


