
RPC / failure

1

last time
redo logging (finish)

(weird?) choice not to use redo logging for everything

client/server → peer-to-peer
reasons to use distributed systems
mailbox and connnection models
names versus addresses

domain name system — distributed, hierarchical database
port numbers

sockets: connections as file descriptors
bind: set local address
accept: get connection (as new file descriptor)
connect: make current file descriptor connection to server

2

client/server flow (multiple connections)

spawn new process (fork)
or thread per connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

3

sockets: missing pieces
translating names to IP address + port number — getaddrinfo

construct arguments for bind (set local address) + connect (set remote
address)
handles using DNS and both IPv4 and IPv6

4

local/Unix domain sockets
POSIX defines sockets that only work on local machine

example use: apps talking to display manager program
want to display window? connect to special socket file
probably don’t want this to happen from remote machines

equivalent of name+port: socket file
appears as a special file on disk

we will use this in assignment
but you won’t directly write code that uses POSIX API

5

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

6

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

6

Unix-domain sockets on my laptop
cr4bd@reiss−lenovo :~$ netstat −−unix −a
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I−Node Path
unix 2 [] DGRAM 40077 /run/user/1000/systemd/notify
unix 2 [ACC] SEQPACKET LISTENING 844 /run/udev/control
unix 2 [ACC] STREAM LISTENING 40080 /run/user/1000/systemd/private
unix 2 [ACC] STREAM LISTENING 40084 /run/user/1000/gnupg/S .gpg−agent
unix 2 [ACC] STREAM LISTENING 37867 /run/user/1000/gnupg/S .dirmngr
unix 2 [ACC] STREAM LISTENING 37868 /run/user/1000/bus
unix 2 [ACC] STREAM LISTENING 37869 /run/user/1000/gnupg/S .gpg−agent .browser
unix 2 [ACC] STREAM LISTENING 37870 /run/user/1000/gnupg/S .gpg−agent .extra
unix 2 [ACC] STREAM LISTENING 60556115 /var/run/cups/cups .sock
unix 2 [ACC] STREAM LISTENING 37871 /run/user/1000/gnupg/S .gpg−agent .ssh
unix 2 [ACC] STREAM LISTENING 37874 /run/user/1000/keyring/control
unix 2 [ACC] STREAM LISTENING 49772163 /run/user/1000/pulse/cli
unix 2 [ACC] STREAM LISTENING 49772158 /run/user/1000/pulse/native
unix 2 [ACC] STREAM LISTENING 59062776 /run/user/1000/speech−dispatcher/speechd .sock
unix 2 [ACC] STREAM LISTENING 32980 @/tmp/ .X11−unix/X0
unix 2 [ACC] STREAM LISTENING 60557382 /run/cups/cups .sock
. . .

7

remote procedure calls
goal: I write a bunch of functions

can call them from another machine

some tool + library handles all the details

called remote procedure calls (RPCs)

8

transparency
common hope of distributed systems is transparency

transparent = can “see through” system being distributed

for RPC: no difference between remote/local calls

(a nice goal, but…we’ll see)

9

stubs
typical RPC implementation: generates stubs

stubs = wrapper functions that stand in for other machine

calling remote procedure? call the stub
same prototype are remote procedure

implementing remote procedure? a stub function calls you

10

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

11

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

11

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

11

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

11

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

11

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

12

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

13

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

13

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

14

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

14

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

14

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

14

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

15

marshalling
RPC system needs to send arguments over the network

and also return values

called marshalling or serialization

can’t just copy the bytes from arguments
pointers (e.g. char*)
different architectures (32 versus 64-bit; endianness)

16

interface description langauge
tool/library needs to know:

what remote procedures exist
what types they take

typically specified by RPC server author in
interface description language

abbreviation: IDL

compiled into stubs and marshalling/unmarshalling code

17

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

18

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

18

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

19

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

19

gRPC IDL example + marshalling
message MakeDirArgs { string path = 1; }

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}

}
example possible format (not what gRPC actually does):

MakeDirectory(MakeDirArgs(path=”/foo”))) becomes:

\x0dMakeDirectory\x01\x04/foo

0x0d = length of ‘MakeDirectory’
0x04 = length of ‘/foo’

20

GRPC examples
will show examples for gRPC

RPC system originally developed at Google

what we’ll use for upcoming assignment

defines interface description language, message format

uses a protocol on top of HTTP/2

note: gRPC makes some choices other RPC systems don’t

21

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

22

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

22

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

22

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

22

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

22

RPC server implementation (method 1)
import dirproto_pb2
import dirproto_pb2_grpc

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def MakeDirectory(self, request, context):
print("MakeDirectory␣called␣with␣path=", request.path)
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return dirproto_pb2.Empty()

23

RPC server implementation (method 2)
import dirproto_pb2, dirproto_pb2_grpc
from dirproto_pb2 import DirectoryList, DirectoryEntry

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def ListDirectory(self, request, context):
try:

result = DirectoryList()
for file_name in os.listdir(request.path)

result.entries.append(DirectoryEntry(name=file_name, ...))
except OSError as err:

context.abort(grpc.StatusCode.UNKNOWN,
"OS␣returned␣error:␣{}".format(err))

return result

24

RPC server implementation (starting)
create server that uses thread pool with
three threads to run procedure calls
server = grpc.server(

futures.ThreadPoolExecutor(max_workers=3)
)
DirectoriesImpl() creates instance of implementaiton class
add_DirectoryServicer_to_server part of generated code
dirproto_pb2_grpc.add_DirectoryServicer_to_server(

DirectoriesImpl()
)
server.add_insecure_port('127.0.0.1:12345')
server.start() # runs server in separate thread

25

RPC client implementation (method 1)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import MakeDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:43534')
stub = DirectoriesStub(channel)
args = MakeDirectoryArgs(path="/directory/name")
try:
stub.MakeDirectory(args)

except grpc.RpcError as error:
... # handle error

26

RPC client implementation (method 2)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import ListDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:43534')
stub = DirectoriesStub(channel)
args = ListDirectoryArgs(path="/directory/name")
try:
result = stub.ListDirectory(args)
for entry in result.entries:
print(entry.name)

except grpc.RpcError as error:
... # handle error

27

RPC non-transparency
setup is not transparent — what server/port/etc.

ideal: system just knows where to contact?

errors might happen
what if connection fails?

server and client versions out-of-sync
can’t upgrade at the same time — different machines

performance is very different from local

28

RPC locally
not uncommon to use RPC on one machine

more convenient alternative to pipes?

allows shared memory implementation
mmap one common file
use mutexes+condition variables+etc. inside that memory

29

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

30

network failures: two kinds
messages lost

messages delayed/reordered

31

network failures: message lost?
detect with acknowledgements (“yes I got it”)

can recover by retrying

can’t distinguish: original message lost or acknowledgment lost

can’t distinguish: machine crashed or network down/slow for a while

32

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

33

exercise: RPC failure scenarios
RPC with MakeDirectory(”foo”)

option A: client stub returns when sent to server

option B: client stub waits for server to return OK

for now, assume only network failures

I call MakeDirectory(”foo”) and it throws an exception:
with Option A: could directory have been created?
with Option B: could directory have been created?

I call MakeDirectory(”foo”) and it throws no exception:
with Option A: could directory have NOT been created?
with Option B: could directory have NOT been created?

34

dealing with network message lost

machine A machine B
append to file A

machine A machine B

append to file A

does A need to retry appending? can’t tell

35

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

36

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

36

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

36

handling failures: try 2

machine
A

machine
B

append to file A

yup, done!append to file A (if you haven’t)

yup, done!

retry (in an idempotent way) until we get an acknowledgement
basically the best we can do, but when to give up?

37

network failures: message reordered?
can detect with sequence numbers

connection protocols do this

RPC abstraction — generally doesn’t
potentially receive ‘stale’ RPC call

can’t distinguish: message lost or just delayed and not received yet

38

handling reordering

machine
A

machine
B

part 1: “hello ”
part 2: “world!”

got part 1+2

39

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

40

two models of machine failure
fail-stop

failing machines stop responding/don’t get messages
or one always detects they’re broken and can ignore them

Byzantine failures

failing machines do the worst possible thing

41

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

42

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

42

distributed transaction problem
distributed transaction

two machines both agree to do something or not do something

even if a machine fails

primary goal: consistent state

secondary goal: do it if nothing breaks

43

distributed transaction example
course database across many machines

machine A and B: student records

machine C: course records

want to make sure machines agree to add students to course

no confusion about student is in course even if failures
“consistency”

okay to say “no” — if possible, can retry later

44

naive distributed transaction? (1)
machine A and B: student records; machine C: course records

any machine can be queried directly for info (e.g. by SIS web interface)

proposed add student to course procedure:

execute code on A or B where student is stored

tell C: add student to course

wait for response from C (if course full, return error)

locally: add student to course

45

exericse (1)
seperate student (local) + course (remote) records

tell remote: add student to course

then locally: add student to course

if no failures, which are possible to observe from third machine
(that asks student/course machines for current records)?

A student record: in course; course record: not in course; but if double
checking: both agree

B same as A, but if double-checking both do not agree
C student record: not in course; course record: in course; but if double

checking: both agree
D same as C, but if double-checking both do not agree

46

exericse (2)
seperate student (local) + course (remote) records

tell remote: add student to course

then locally: add student to course

if failures, which are possible to observe from third machine (that
asks student/course machines for current records)?

A student record: in course; course record: not in course; but if double
checking: both agree

B same as A, but if double-checking both do not agree
C student record: not in course; course record: in course; but if double

checking: both agree
D same as C, but if double-checking both do not agree

47

backup slides

48

on versioning
normal software: multiple versions of library?

extra argument for function
change what function does
…

just link against “correct version”

RPC: server gets upgraded out-of-sync with client

want to upgrade functions without breaking old clients

49

gRPC’s versioning
gRPC: messages have field numbers

renaming fields? doesn’t matter, just number changes

rules allow adding new (optional) fields
get message with extra field — ignore it
get message missing field — default/null value

otherwise, need to make new methods for each change
…and keep the old ones working for a while

50

versioned protocols
alternative approach: version numbers in protocol/messages

server can implement multiple versions

eventually discard old versions:

51

gRPC: returning errors
any RPC can result in an error

both errors from libraries and from RPCs can use same API

Python client: throws a grpc.RpcError exception
no support for custom exceptions types (probably because tricky to make
language-neutral)

C++ client: method return value is a Status object
result of method ‘returned’ by modifying result object passed via pointer
(for historical reasons, Google doesn’t like C++ exceptions)

52

some gRPC errors
method not implemented

e.g. server/client versions disagree
local procedure calls — linker error

deadline exceeded
no response from server after a while — is it just slow?

connection broken due to network problem

53

leaking resources?
stub = ...
remote_file_handle = stub.RemoteOpen(filename)
write_request = RemoteWriteRequest(

file_handle=remote_file_handle,
data="Some␣text.\n"

)
stub.RemotePrint(write_request)
stub.RemoteClose(remote_file_handle)

what happens if client crashes?

does server still have a file open?

54

RPC performance
local procedure call: ∼ 1 ns

system call: ∼ 100 ns

network part of remote procedure call
(typical network) > 400 000 ns
(super-fast network) 2 600 ns

55

IDL pseudocode + marshalling example
protocol dirprotocol {

1: int32 mkdir(string);
2: int32 rmdir(string);

}
mkdir("/directory/name") returning 0
client sends: \x01/directory/name\x00
server sends: \x00\x00\x00\x00

56

mitigations for blocking
coordinator aborts if still possible

requires coordinator not to go away
handles workers failing before decision made

workers share outcomes without coordinator
possibly handles coordinator failing (if all workers still working fine)
other worker can say “coordinator said ABORT/COMMIT” (even if
coordinator now down)
if any worker agreed to abort, don’t need coordinator

57

	server flow (multiple connections)
	local sockets
	remote procedure calls
	RPC concept and stubs
	RPC data flow
	preview: code using an RPC library
	marshalling
	why interface description languages?
	one idea for marshalling
	GRPC example
	introduction
	IDL
	Python server
	Python client

	non-transparency: errors and versioning and performance
	RPC locally

	failure
	failure models
	introduction
	kinds of network failures
	aside: failure models and RPC
	network failure scenarios
	fail stop

	distributed transaction
	naive solution? [exercise]

	backup slides
	non-transparency issues
	RPC versioning

	gRPC errors
	leaking resources
	performance

	alternate IDL example
	TPC blocking mitigations

