
Network FS / Access Control

1

last time
two-phase commit

consensus: workers + coordinator agree to commit
no take-backs via redo-logging at each node
blocking on failure

idea of majority-vote consensus

2

logistics note
last week’s post-quiz due Thursday

twophase due next Monday

3

network filesystems
department machines — your files always there

even though several machines to log into

how? there’s a network file server

filesystem is backed by a remote machine

4

simple network filesystem

user program

kernel

system calls:
open("foo.txt", …)
read(fd,"bar.txt",…)
…

login server

file server
(other machine)remote procedure calls:

open("foo.txt", …)
read(fd, "bar.txt", …)
…

5

system calls to RPC calls?
just turn system calls into RPC calls?

(or calls to the kernel’s internal fileystem abstraction, e.g. Linux’s Virtual
File System layer)

has some problems:

what state does the server need to store?

what if a client machine crashes?

what if the server crashes?

how fast is this?

6

state for server to store?
open file descriptors for each client process?

what file
offset in file

current working directory?
what if we want some local and non-local files?

kinda expensive with many clients, running many processes

…but that’s not the biggest issue

7

if a client crashes?
suppose a client hasn’t sent anything to the server in 1 hour

can the server delete its open file information yet?

exercise: reasons why not?
take a minute to come up with your most plausible reason

8

if the server crashes?
well, first we restart the server/start a new one…

then, what do clients do?

probably need to restart to?

can we do better?

exercise: what information could clients keep to help

9

NFSv2
NFS (Network File System) version 2

standardized in RFC 1094 (1989)

based on RPC calls

10

NFSv2 RPC calls (subset)
LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

11

NFSv2 RPC calls (subset)
LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure
file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

12

NFSv2 client versus server
clients: file descriptor →server name, file ID, offset

client machine crashes? mapping automatically deleted
“fate sharing”

server: convert file IDs to files on disk
typically find unique number for each file
usually by inode number

server doesn’t get notified unless client is using the file

13

file IDs
device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

14

file IDs
device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

14

file IDs
device + inode + “generation number”?

generation number: incremented every time inode reused

problem: file removed while client has it open

later client tries to access the file
maybe inode number is valid but for different file
inode was deallocated, then reused for new file

Linux filesystems store a “generation number” in the inode
basically just to help implement things like NFS

14

NFSv2 RPC calls (subset)
LOOKUP(dir file ID, filename) → file ID

GETATTR(file ID) → (file size, owner, …)

READ(file ID, offset, length) → data

WRITE(file ID, data, offset) → success/failure

CREATE(dir file ID, filename, metadata) → file ID

REMOVE(dir file ID, filename) → success/failure

SETATTR(file ID, size, owner, …) → success/failure

file ID: opaque data (support multiple implementations)
example implementation: device+inode number+“generation number”

“stateless protocol” — no open/close/etc.
each operation stands alone

15

NFSv2 RPC (more operations)
READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

16

NFSv2 RPC (more operations)
READDIR(dir file ID, count, optional offset “cookie”) →
(names and file IDs, next offset “cookie”)

pattern: client storing opaque tokens
for client: remember this, don’t worry about what it means

tokens represent something the server can easily lookup
file IDs: inode, etc.
directory offset cookies: byte offset in directory, etc.

strategy for making stateful service stateless

16

statefulness
stateful protocol (example: FTP, two-phase commit)

previous things in connection matter
e.g. logged in user
e.g. current working directory
e.g. where to send data connection

stateless protocol (example: HTTP, NFSv2)
each request stands alone
servers remember nothing about clients between messages
e.g. file IDs for each operation instead of file descriptor

17

stateful versus stateless
in client/server protocols:

stateless: more work for client, less for server
client needs to remember/forward any information
can run multiple copies of server without syncing them
can reboot server without restoring any client state

stateful: more work for server, less for client
client sets things at server, doesn’t change anymore
hard to scale server to many clients (store info for each client
rebooting server likely to break active connections

18

exercise
Suppose we want to make a stateless file server. Which of the
following features are possible?

[A] allowing clients to retrieve or write a whole file at a time, no matter
its size
[B] a client that detects updates to a file within 60 seconds (assuming no
failures or network slowdowns)
[C] a client completing an open operation without contacting the server,
without risking inconsistency if another client is also modifying the
directories containing that file
[D] a client completing an open operation without contacting the server,
without risking inconsistency provided that another client has not/will
not access the file or the directories containing it for at least 5 minutes

19

performance
before: reading/writing files/directories goes to local memory

lots of work to use memory to cache, read-ahead

so open/read/write/close/rename/readdir/etc. take microseconds
open that file? yes, I have the direntry cached
read from that file? already in my memory

now: take milliseconds+
open that file? let’s ask the server if that’s okay
read from that file? let’s copy it from the server
etc.

20

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

21

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

21

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

21

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

21

updating cached copies?

client A
cached copy

of NOTES.txt

client B

server

write to NOTES.txt?

how does A’s copy get updated?
can A actually use its cached copy?

write to NOTES.txt?

how does A’s copy get updated?
one solution: A checks on every read

still allows stateless server

did NOTES.txt change?

update

write to NOTES.txt?

when does A tell server about update?

read NOTES.txt?

does B get updated version from A? how?

21

consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow some inconsistency
update server on close; check cache on open

alternate solution: give up on stateless server

22

consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow some inconsistency
update server on close; check cache on open

alternate solution: give up on stateless server

22

consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow some inconsistency
update server on close; check cache on open

alternate solution: give up on stateless server

22

consistency with stateless server
always check server before using cached version

write through all updates to server

allows server to not remember clients
no extra code for server/client failures, etc.

…but kinda destroys benefit of caching
many milliseconds to contact server, even if not transferring data

NFSv3’s solution: allow some inconsistency
update server on close; check cache on open

alternate solution: give up on stateless server
22

typical text editor/word processor
typical word processor:

opening a file:
open file, read it, load into memory, close it

saving a file:
open file, write it from memory, close it

23

two people saving a file?
have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

24

two people saving a file?
have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

24

open to close consistency
a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

25

open to close consistency
a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

25

protection/security
protection: mechanisms for controlling access to resources

page tables, preemptive scheduling, encryption, …

security: using protection to prevent misuse
misuse represented by policy
e.g. “don’t expose sensitive info to bad people”

this class: about mechanisms more than policies

goal: provide enough flexibility for many policies

26

adversaries
security is about adversaries

do the worst possible thing

challenge: adversary can be clever…

27

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

28

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

28

authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

29

authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

29

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill

each process belongs
to 1+ protection domains:

“user cr4bd”
“group csfaculty”

…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

31

user IDs
most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

32

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

33

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

33

POSIX groups
gid_t getegid(void);

// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

34

id
cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

35

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

36

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

36

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

37

representing access control matrix
with objects (files, etc.): access control list

list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

38

POSIX file permissions
POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

(see docs for chmod command)

39

POSIX/NTFS ACLs
more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

40

POSIX ACL syntax
group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions
user:tj1a:−−−

POSIX acl rule:
user take precedence over group entries

41

authorization checking on Unix
checked on system call entry

no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

42

superuser
user ID 0 is special

superuser or root

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

43

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

44

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

45

Unix password storage
typical single-user system: /etc/shadow

only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

46

aside: beyond passwords
/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

47

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

48

changing user IDs
int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

49

sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

50

set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

51

set-user ID gates
set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel

way to allow normal users to do one thing that needs privileges
write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

52

uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

53

set-user-ID program v syscalls
hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

54

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

55

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

55

a very broken setuid program
print_grade.c:
int main(int argc, char **argv) {

char filename[500];
sprintf(filename, "all-grades/%s/%s.txt",

argv[1], getenv("USER"));
int fd = open(filename, O_RDWR);
char buffer[1024];
read(fd, buffer, 1024);
printf("%s:␣%s\n", argv[1], buffer);

}

HUGE amount of stuff can go wrong

examples?

56

set-user ID programs are very hard to write
what if stdin, stdout, stderr start closed?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

57

a delegation problem
consider printing program marked setuid to access printer

decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

58

a broken solution
if (original user can read file from argument) {

open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

59

a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

link: create new directory entry for file
another option: rename, symlink (“symbolic link” — alias for
file/directory)
another possibility: run a program that creates secret file
(e.g. temporary file used by password-changing program)

time-to-check-to-time-of-use vulnerability
60

TOCTTOU solution
temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

61

practical TOCTTOU races?
can use symlinks maze to make check slower

symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

lots of time spent following symbolic links when program opening
toprint.txt

gives more time to sneak in unlink/link or (more likely) rename

62

exercise
which (if any) of the following would fix for a TOCTTOU
vulnerability in our setuid printing application? (assume the
Unix-permissions without ACLs are in use)

[A] both before and after opening the path passed in for reading,
check that the path is accessible to the user who ran our application

[B] after opening the path passed in for reading, using fstat with
the file descriptor opened to check the permissions on the file

[C] before opening the path, verify that the user controls the file
referred to by the path and the directory containing it

63

some security tasks (1)
helping students collaborate in ad-hoc small groups on shared
server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

64

some security tasks (2)
letting students assignment files to faculty on shared server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

65

some security tasks (3)
running untrusted game program from Internet?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

66

backup slides

67

sandboxing
sandbox — restricted environment for program

idea: dangerous code can play in the sandbox as much as it wants

can’t do anything harmful

68

sandbox use cases
buggy video parsing code that has buffer overflows

browser running scripts in webpage

autograder running student submissions

…

(parts of) program that don’t need to have user’s full permissions

no reason video parsing code should be able open() my taxes

can we have a way to ask OS for this?

69

sandbox use cases
buggy video parsing code that has buffer overflows

browser running scripts in webpage

autograder running student submissions

…

(parts of) program that don’t need to have user’s full permissions
no reason video parsing code should be able open() my taxes

can we have a way to ask OS for this?

69

Google Chrome architecture

70

sandboxing mechanisms
create a new user with few privileged, switch to user

problem: creating new users usually requires sysadmin access
problem: every user can do too much
e.g. everyone can open network connection?

with capabilities, just discard most capabilities
just close capabilities you don’t need
run rendering engine with only pipes to talk to browser kernel

otherwise: system call filtering
disallow all ‘dangerous’ system calls

71

Linux system call filtering
seccomp() system call

“strict mode”: only allow read/write/_exit/sigreturn
current thread gives up all other privileges
usage: setup pipes, then communicate with rest of process via pipes

alternately: setting a whitelist of allowed system calls + arguments
little programming language (!) for supported operations

browsers use this to protect from bugs in their scripting
implementations

hope: find a way to execute arbitrary code? — not actually useful

72

sandbox browser setup
create pipe

spawn subprocess (“rendering engine”)

put subproces in strict system call filter mode

send subprocesses webpages + events

subprocess sends images to render back on pipe

73

aside: real/effective/saved
POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID

idea: become other user for one operation, then switch back

74

aside: real/effective/saved
POSIX processes have three user IDs

effective — determines permission — geteuid()
jo running sudo: geteuid = superuser’s ID

real — the user who started the program — getuid()
jo running sudo: getuid = jo’s ID

saved set-user-ID — user ID from before last exec
effective user ID saved when a set-user-ID program starts
jo running sudo: = jo’s ID
no standard get function, but see Linux’s getresuid

process can swap or set effective UID with real/saved UID
idea: become other user for one operation, then switch back

74

why so many?
two versions of Unix:

System V — used effective user ID + saved set-user-ID

BSD — used effective user ID + real user ID

POSIX commitee solution: keep both

75

aside: confusing setuid functions
setuid — if root, change all uids; otherwise, only effective uid

seteuid — change effective uid
if not root, only to real or saved-set-user ID

setreuid — change real+effective; sometimes saved, too
if not root, only to real or effective or saved-set-user ID

…

more info: Chen et al, “Setuid Demystified”
https://www.usenix.org/conference/
11th-usenix-security-symposium/setuid-demystified

76

https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified
https://www.usenix.org/conference/11th-usenix-security-symposium/setuid-demystified

also group-IDs
processes also have a real/effective/saved-set group-ID

can also have set-group-ID executables

same as set-user-ID, but only changes group

77

sandboxing use case: buggy video decoder
/* dangerous video decoder to isolate */
int main() {

EnterSandbox();
while (fread(videoData, sizeof(videoData), 1, stdin) > 0) {

doDangerousVideoDecoding(videoData, imageData);
fwrite(imageData, sizeof(imageData), 1, stdout);

}
}

/* code that uses it */
FILE *fh = RunProgramAndGetFileHandle("./video-decoder");
for (;;) {

fwrite(getNextVideoData(), SIZE, 1, fh);
fread(image, sizeof(image), 1, fh);
displayImage(image);

}

78

typical text editor/word processor
typical word processor:

opening a file:
open file, read it, load into memory, close it

saving a file:
open file, write it from memory, close it

79

two people saving a file?
have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

80

two people saving a file?
have a word processor document on shared filesystem

Q: if you open the file while someone else is saving, what do you
expect?

Q: if you save the file while someone else is saving, what do you
expect?

observation: not things we really expect to work anyways

most applications don’t care about accessing file while someone has
it open

80

open to close consistency
a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

81

open to close consistency
a compromise:

opening a file checks for updated version
otherwise, use latest cache version

closing a file writes updates from the cache
otherwise, may not be immediately written

idea: as long as one user loads/saves file at a time, great!

81

an alternate compromise
application opens a file, read it a day later, result?

day-old version of file

modification 1: check server/write to server after an amount of time

doesn’t need to be much time to be useful
word processor: typically load/save file in < second

82

AFSv2
Andrew File System version 2

uses a stateful server

also works file at a time — not parts of file
i.e. read/write entire files

but still chooses consistency compromise
still won’t support simulatenous read+write from diff. machines well

stateful: avoids repeated ‘is my file okay?’ queries

83

NFS versus AFS reading/writing
NFS reading: read/write block at a time

AFS reading: always read/write entire file

exercise: pros/cons?
efficient use of network?
what kinds of inconsistency happen?
does it depend on workload?

84

AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: write whole file

last writer wins

85

NFS: last writer wins per block
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
NFS: write NOTES.txt block 0

close NOTES.txt
NFS: write NOTES.txt block 0
NFS: write NOTES.txt block 1

NFS: write NOTES.txt block 1
NFS: write NOTES.txt block 2

NFS: write NOTES.txt block 2
NOTES.txt: 0 from B, 1 from A, 2 from B

86

AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

87

AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback write NOTES.txtNOTES.txt updated

87

AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

87

AFS caching
client A client B

server

cached copy
of NOTES.txt

cached copy
of NOTES.txt

callbacks:
(A, NOTES.txt)
(B, NOTES.txt)

fetch NOTES.txt +
register callback

fetch NOTES.txt +
register callback

write NOTES.txtNOTES.txt updated

87

callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

88

callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

88

callback inconsistency (1)
on client A on client B
open NOTES.txt
(AFS: NOTES.txt fetched)
read from cached NOTES.txt

open NOTES.txt
(NOTES.txt fetched)
read from NOTES.txt

write to cached NOTES.txt
read from NOTES.txt

write to cached NOTES.txt
close NOTES.txt
(write to server)

(AFS: callback: NOTES.txt changed)

problem with close-to-open consistency
same issue w/NFS: B can’t know about write
because server doesn’t
(could fix by notifying server earlier)

close-to-open consistency assumption:
are not accessing file from two places at once

88

supporting offline operation
so far: assuming constant contact with server

someone else writes file: we find out

we finish editing file: can tell server right away

good for an office
my work desktop can almost always talk to server

not so great for mobile cases
spotty airport/café wifi, no cell reception, …

89

basic offline operation idea
when offline: work on cached data only

writeback whole file only

problem: more opportunity for overlapping accesses to same file

90

recall: AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: (over)write whole file

probably losing data!
usually wanted to merge two versions

worse problem with delayed writes for disconnected operation

91

recall: AFS: last writer wins
on client A on client B
open NOTES.txt

open NOTES.txt
write to cached NOTES.txt

write to cached NOTES.txt
close NOTES.txt
AFS: write whole file

close NOTES.txt
AFS: (over)write whole file

probably losing data!
usually wanted to merge two versions

worse problem with delayed writes for disconnected operation
91

Coda FS: conflict resolution
Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates
avoid problem of last writer wins

and then…ask user? regenerate file? …?

92

Coda FS: conflict resolution
Coda: distributed FS based on AFSv2 (c. 1987)

supports offline operation with conflict resolution

while offline: clients remember previous version ID of file

clients include version ID info with file updates

allows detection of conflicting updates
avoid problem of last writer wins

and then…ask user? regenerate file? …?

92

Coda FS: what to cache
idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

93

Coda FS: what to cache
idea: user specifies list of files to keep loaded

when online: client synchronizes with server
uses version IDs to decide what to update

DropBox, etc. probably similar idea?

93

version ID?
not a version number?

actually a version vector

version number for each machine that modified file
number for each server, client

allows use of multiple servers
if servers get desync’d, use version vector to detect
then do, uh, something to fix any conflicting writes

94

file locking
so, your program doesn’t like conflicting writes

what can you do?

if offline operation, probably not much…

otherwise file locking

except it often doesn’t work on NFS, etc.

95

advisory file locking with fcntl
int fd = open(...);
struct flock lock_info = {

.l_type = F_WRLCK, // write lock; RDLOCK also available
// range of bytes to lock:
.l_whence = SEEK_SET, l_start = 0, l_len = ...

};
/* set lock, waiting if needed */
int rv = fcntl(fd, F_SETLKW, &lock_info);
if (rv == −1) { /* handle error */ }
/* now have a lock on the file */

/* unlock --- could also close() */
lock_info.l_type = F_UNLCK;
fcntl(fd, F_SETLK, &lock_info);

96

advisory locks
fcntl is an advisory lock

doesn’t stop others from accessing the file…

unless they always try to get a lock first

97

POSIX file locks are horrible
actually two locking APIs: fcntl() and flock()

fcntl: not inherited by fork

fcntl: closing any fd for file release lock
even if you dup2’d it!

fcntl: maybe sometimes works over NFS?

flock: less likely to work over NFS, etc.

98

fcntl and NFS
seems to require extra state at the server

typical implementation: separate lock server

not a stateless protocol

99

lockfiles
use a separate lockfile instead of “real” locks

e.g. convention: use NOTES.txt.lock as lock file

lock: create a lockfile with link() or open() with O_EXCL
can’t lock: link()/open() will fail “file already exists”
for current NFSv3: should be single RPC calls that always contact server
some (old, I hope?) systems: link() atomic, open() O_EXCL not

unlock: remove the lockfile
annoyance: what if program crashes, file not removed?

100

	network filesystems
	idea: shared, remote FS
	problem: state
	stateless NFS
	on statefulness
	exercise
	problem: caching
	problems with caching
	close-to-open consistency

	protection v security
	security: authentication v authorization
	access matrix/control list
	protection domains?
	POSIX user IDs
	POSIX groups

	access control lists
	file permissions

	authorizaton on Unix
	where checking happens
	superuser
	/bin/login
	sudo/set-user-ID
	set-user-ID programs are hard to write
	aside: TOCTTOU
	exercise
	exercises on POSIX model

	backup slides
	sandboxing / seccomp
	real/effective/saved UIDs
	sandboxing code: video decoder
	close-to-open consistency or timing
	(if time) AFS: callbacks
	Coda: disconnected operation
	file locking

