
Spring 2019 CS 4414 Midterm KEY, Page 1 of 10 Computing ID: KEY

Fill out the bottom of this page with your computing ID.
Write your computing ID at the top of each page in case pages get separated.

On my honor as a student I have neither given nor received aid on this exam.

TPEGS FOOTER HERE

Spring 2019 CS 4414 Midterm KEY, Page 2 of 10 Computing ID: KEY

1. (5 points) Suppose an xv6 program executes a system call with the following C code:

char buffer[1];
int result = read(0, &buffer[0], 1);

which calls a system-call wrapper function read. What is true about this function? one point per
option Select all that apply.

√
as part of its execution, this function will store the system call number for read in a register
or on the user stack

© this function will place the system call’s arguments on the kernel stack before entering kernel
mode

© this function is executed in both kernel and user mode
© this function will save all registers on the user stack before triggering an exception to enter

kernel mode
© the function is located an address in the kernel’s address space, so attempting to call it

instead triggers an protection or page fault

2. (4 points) Consider an xv6 system running on a single core. Suppose an xv6 process A makes a read()
system call, which requires it to wait until more input is available. While this happens, xv6 switches
to another process B. Before the system call, a local variable in the user code of process A was stored
in the callee-saved register EBX. Where will the EBX regsiter’s value be while process B is executing?

© on the user stack of process A, because the compiler generated code to push it there before
the system call

√
on the kernel stack of process A, as a result of starting the system call

© on the kernel stack of process A, as a result of the context switch to process B half-credit
© on the user stack of process B, as a result of the context switch to process B
© on the kernel stack of process B, as a result of the context switch to process B
© on the kernel stack of process B, as a result of switching from kernel to user mode after the

context switch
© in the processor’s EBX register, since nothing will have happened to change EBX

3. (4 points) When attempting to write a shell for a POSIX-like system, a programmer discovers that
after running a command like programA > foo.txt, any future command’s output also goes to
foo.txt. Which of the following is a likely cause of this problem?

© their shell did not wait for programA to finish before accepting another command
© their shell ran out of file descriptors, so opening foo.txt to run the command failed
© their shell did not close the file descriptor for foo.txt in the child process before executing

programA
© programA called dup2 itself, which changed the shell’s standard output file descriptor
√

their shell called dup2 before forking instead of after forking

Spring 2019 CS 4414 Midterm KEY, Page 3 of 10 Computing ID: KEY

4. (7 points) Consider the following POSIX C code:

int fds[2];
pipe(fds);
pid_t pid = fork();
if (pid > 0) {

dup2(fds[0], STDOUT_FILENO);
waitpid(pid, NULL, 0);

} else {
write(STDOUT_FILENO, "Hello!", strlen("Hello!"));
write(fds[1], "Bye!", strlen("Bye!"));
exit();

}

Recall that the write end of a pipe is returned in the second element of the array passed to pipe
Assuming all writes, forks, dup2s, and waitpids succeed (and no partial writes occur), which of
the following are possible outputs of this program? all or nothing? Select all that apply.
© Hello!Bye! © Hello!Hello!Bye! © Bye!Hello! © Bye!

√
Hello!

© Hello!Bye!Hello! © (no output)

5. (3 points) On POSIX-like systems, the write and read system call wrapper functions are typically
not used directly by programmers. Instead, it is more common for programmers to use functions like
those in the C stdio.h header or the C++ iostream and fstream headers, which eventually call
the system call wrapper functions. Which of the following are advantages or disadvantages of these
higher level functions? 1 point per option Select all that apply.

√
low-level functions like read may return before reading as much as requested from a pipe,
and higher-level functions will handle this by calling the lower-level functions multiple times

√
calling the higher-level functions many times is likely to be faster than calling low-level
functions like write many times

© to avoid reading too much, when reading a line (as with fgets or std::getline), the
higher-level functions must call a low-level function like read() once for each charcter, but
a programmer using the lower-level functions directly could avoid this

6. (4 points) Which of the following is true about a scheduler that implements a round-robin scheduling
policy? one point per option Select all that apply.

© this scheduler will minimize the number of context switches when scheduling processes that
never sleep or wait for I/O

© this scheduler has higher throughput than a first-come first-served policy
√

this scheduler will (approximately) evenly divide CPU time between processes that never
sleep or wait for I/O

√
it is possible to implement a round-robin scheduler such that selecting the next process to
run and marking a process as runnable takes O(1) time

Spring 2019 CS 4414 Midterm KEY, Page 4 of 10 Computing ID: KEY

7. (4 points) Suppose an operating system is trying to minimize turnaround time of the processes it
is running. Then, which of the following are approaches its scheduler could take to help achieve this
goal? one point per option Select all that apply.

√
prefer to run processes that would start their next I/O operations sooner

© prefer to run more CPU-intensive processes before other processes
√

prefer to run more processes that have been runnable less often than other processes
© when an I/O operation finishes, wait to schedule the newly runnable process until the cur-

rently running process is ready to yield the CPU

8. (4 points) A system can stop deadlocks by aborting tasks that are involved in the deadlock. However,
this strategy causes additional problems, such as . Select all that apply.

√
a mechanism that can rollback the state changes it has made during the critical section is
required.

© all resources must be acquired at once and in a consistent order
√

livelock can occur in place of the deadlock
© a new scheduling algorithm is required to allow preemption

9. For each of the following statements, indicate whether they are true about
• a round-robin scheduler (RR)
• a lottery scheduler, like the one required for the scheduler assignment (lottery)
• a shortest job first scheduler without preemption (SJF)
• a shortest remaining time first scheduler with preemption (SRTF)
• a multi-level feedback queue scheduler (MLFQ)
• Linux’s Completely Fair Scheduler (CFS)
• a strict priority scheduler with preemption (prio)

For each question, select all that apply and do not account for how users might adjust what threads
they run (other than specifying scheduler parameters, like priorities) based on the scheduler in use. -1
point per option disagreeing with key

(a) (4 points) This kind of scheduler adjusts when it runs a thread next based the thread’s behavior the
last time it ran.
© RR © lottery © SJF © SRTF arguable for SRTF (accept either)

√
MLFQ

√
CFS

© prio
(b) (4 points) Across a typical desktop workload and, for schedulers which require configuration of paramteres

like ticket counts, appropriate configuration of those parameters, this kind of scheduler is likely to
achieve lower mean turnaround times than a first-come, first-served scheduler.
√

RR
√

lottery
√

SJF
√

SRTF
√

MLFQ
√

CFS
√

prio
(c) (4 points) Programs running under this scheduler can affect the scheduler’s decision by performing

additional I/O to end up getting much more compute time than they would otherwise be able to.
© RR © lottery

√
SJF

√
SRTF

√
MLFQ © CFS © prio

Spring 2019 CS 4414 Midterm KEY, Page 5 of 10 Computing ID: KEY

10. (14 points) Consider the following C++ code:

pthread_mutex_t lk;
int global = 0;
void *thread_function(void *arg) {

int *ptr = (int*) arg;
pthread_mutex_lock(&lk);
global = global + *ptr;
cout << *ptr << "/" << global << " ";
pthread_mutex_unlock(&lk);
return NULL;

}

int main() {
pthread_t threads[2];
int i;
pthread_mutex_init(&lk, NULL);
pthread_mutex_lock(&lk);
global = 100;
for (i = 0; i < 2; i = i + 1) {

pthread_create(&threads[i], NULL, thread_function, (void*) &i);
}
pthread_mutex_unlock(&lk);
pthread_join(&threads[0], NULL);
pthread_mutex_lock(&lk);
std::cout << "[in main " << global << "] ";
pthread_mutex_unlock(&lk);
pthread_join(&threads[1], NULL);
return 0;

}

Assume all the pthreads calls above do not fail and ignore any minor syntax errors. Which of the
following are possible outputs? -4 if all answers is consistent with i not being shared (only those
answers indicated below selected); otherwise -2 per wrong answer Select all that apply.

© [in main 100] 0/0 1/1
© [in main 100] 2/102 2/104 impossible due to join
© [in main 100] 0/100 1/101
© 0/0 [in main 100] 1/1
√

2/102 [in main 102] 2/104
© 0/100 [in main 100] 1/101 consistent with i not being shared
© 0/100 1/101 [in main 101] consistent with i not being shared
© 0/100 1/101 [in main 100]
√

2/102 2/104 [in main 104]
© (a segmentation fault)
© (it can hang before outputting anything)

Spring 2019 CS 4414 Midterm KEY, Page 6 of 10 Computing ID: KEY

11. (12 points) Consider a multiprocessor system that uses a cache coherency protocol where
• each processor has its own cache,
• processors are connected via a single shared bus,
• each cache block in a processor’s cache is either in an Invalid (block not stored), Shared, or

Modified state, and
• when possible, processors will request that a cached value be invalidated instead of updating it
• each cache block can hold 4 words

Suppose the following operations occur in the following order, starting from caches with no values
cached. Assume address X0 is in the first word of a cache block X, X1 is in the second word of the
cache block, and so on. Identify the state of the cache block in each processor after edch step below
occurs, assuming all reads and writes are 1 word. The first one is done for you. -1.5 points per wrong

1. processor A reads from address X0
Processor A state: Shared Processor B state: Invalid

2. processor A reads from address X2
Processor A state: Shared Processor B state: Invalid

3. processor B reads from address X1
Processor A state: Shared Processor B state: Shared

4. processor B writes to address X2
Processor A state: Invalid Processor B state: Modified

5. processor A reads from address X0
Processor A state: Shared Processor B state: Shared or Invalid

Spring 2019 CS 4414 Midterm KEY, Page 7 of 10 Computing ID: KEY

12. (20 points) Suppose we want to implement a variant of a reader/writer lock where instead of allowing
any number of readers or exactly one writer to acquire the lock, we allow up to K readers or exactly
one writer. When K readers are using the lock and a new reader asks the lock, it must wait until one
reader leaves.
In addition, in this reader/writer lock, writers have priority over readers.
Fill in the blanks in the following partial implementation to complete it. Ignore any minor syntax errors,
and assume all mutxes and condition variables are appropriately initialized. Avoid implementations
that very frequently wake up threads when they cannot actually make progress immediately.
one possible solution:
const int K = ...; // maximum number of readers
int readers, writers, waiting_readers, waiting_writers;
pthread_mutex_t lock;
pthread_cond_t reader_cv, writer_cv;
void ReadLock() {

pthread_mutex_lock(&lock);
waiting_readers += 1;
/* blank 1 */ while (readers == K || writers == 1 || waiting_writers > 0) {

pthread_cond_wait(&reader_cv, &lock);
}
waiting_readers -= 1;
readers += 1;
pthread_mutex_unlock(&lock);

}

void WriteLock() {
pthread_mutex_lock(&lock);
waiting_writers += 1;
/* blank 2 */ while (readers > 0 || writers > 0) {

pthread_cond_wait(&writer_cv, &lock);
}
waiting_writers -= 1;
writers += 1;
pthread_mutex_unlock(&lock);

}

void ReadUnlock() {
pthread_mutex_lock(&lock);
readers -= 1;
/* blank 3 */ if (readers == 0 && waiting_writers > 0) {

pthread_cond_signal(&writer_cv);
} else {

/* blank 4 */ pthread_cond_signal(&reader_cv);
}
pthread_mutex_unlock(&lock);

}

void WriteUnlock() {
pthread_mutex_lock(&lock);
writers -= 1;
if (waiting_writers > 0) {

pthread_cond_signal(&writer_cv);
} else {

pthread_cond_broadcast(&reader_cv);
}
pthread_mutex_unlock(&lock);

}

• 4 points: whiles in blanks 1 and 2 (half-credit for if)
• 4 points: first while loop

– 1 point for checking readers, 1 point for writers, 2 points for waiting writers

Spring 2019 CS 4414 Midterm KEY, Page 8 of 10 Computing ID: KEY

– -1 point for mixing up && and ||
• 4 points: second while loop

– 2 points for readers, 2 points for writers
– -1 point for mixing up && and ||

• 4 points: if statement (blank 3)
– 2 points for readers, 2 points for waiting writers
– -1 point for mixing up && and ||

• 4 points: else statement (half-credit if broadcasting)

Spring 2019 CS 4414 Midterm KEY, Page 9 of 10 Computing ID: KEY

13. (15 points) Suppose we want to implement a pair of functions, SetFlag and WaitForFlag. SetFlag
sets a boolean flag which is initially false to true and makes threasd waiting for the flag to become true
stop waiting. WaitForFlag does nothing if the flag is already true and otherwise waits until it is set
by SetFlag. (Recall that post is the up operation and wait is the down operation.)
Fill in the blanks (marked A, B, and C) in the following implementation using counting semaphores:
(Ignore minor syntax errors, missing error handling, and assume semaphores are initialized elsewhere
as specified in the comments. You may choose not to use all of the blanks.)

bool flag = false;
int num_waiting = 0;
sem_t mutex /* initialized with count 1 */;
sem_t gate /* initialized with count 0 */;

void SetFlag() {
sem_wait(&mutex);
flag = true;
while (num_waiting > 0) {

sem_post(&gate); /* A */
num_waiting −= 1;

}
sem_post(&mutex);

}

void WaitForFlag() {
sem_wait(&mutex);
if (flag == false) {

num_waiting += 1;

sem_post(&mutex) /* B */
sem_wait(&gate); /* C */

} else {
sem_post(&mutex);

}
}

originally posted version of the key put sem_wait for A instead of sem_post
5 points for unlocking mutex (half-credit for unlocking it late); 10 points for using gate (half-credit if
swapping post/wait)

Spring 2019 CS 4414 Midterm KEY, Page 10 of 10 Computing ID: KEY

14. Consider a system with virtual memory and (like xv6)
• 4096 byte (212 byte) pages
• 4-byte page table entries
• two level page tables
• 210 entries for the page tables at each level

Suppose the first-level page table entry corresponding to virtual byte address 0x12345:
• has its present (valid) bit set
• has its writeable bit unset
• has its user-mode accessible bit set
• contains physical page number 0x55

and the second-level page table entry corresponding to this address:
• has its present (valid) bit set
• has its writable bit unset
• has its user-mode-accessible bit set
• contains physical page number 0x44

(a) (5 points) When a program performs a read from virtual byte address 0x12345, the read will return
the value at what physical byte address?
0x44345 (half credit for 0x389 (0x44 + 0x345) or similar; 1.5 points for 0x55345)

(b) (5 points) What is the physical byte address of the second-level page table entry for virtual byte address
0x12345?
0x55048 (half credit for 0x55012 or similar; 1.5 points for 0x44012 or similar)

(c) (4 points) When a program performs a write to virtual byte address 0x12345, this will cause a fault
(a kind of exception). In response to the fault, suppoes the operating system wants to copy a page
data around address 0x12345, update the page table entries to point to this new copy, then continues
execution of the program, retrying the failed memory access. The physical page number of the copy
should be placed in . -1 point per wrong Select all that apply.

© the page table entry in the second-level page table that follows the entry for 0x12345
√

the second-level page table entry for virtual addresss 0x12345
© the first-level page table entry for vitrual address 0x12345
© the first page table entry in the second-level page table corresponding to virtual address

0x12345 drop for lack of clarity

