
introduction / processes + system calls
CS 4414-001

1

lectures
via Zoom

recordings available afterwards
attendance not required

if you aren’t watching live, I recommend writing down questions…
you can ask via Piazza, office hours

2

course webpage
https://www.cs.virginia.edu/~cr4bd/4414/S2021/

linked off Collab

3

https://www.cs.virginia.edu/~cr4bd/4414/S2021/

office hours
via Discord

voice chat and/or screensharing and/or text chat
instructions on website
invite link on Collab

queue website:
first few slots first-come, first-served

may be reset manually by TAs, e.g. when long gaps between OHs
later slots by last time helped

my office hours: I might be splitting time with CS4630

4

homeworks
there will be programming assignments

first is due next week

…mostly in C or C++; one in Python

one or two weeks
if two weeks “checkpoint” submission after first week

two week assignments worth more

5

xv6
some assignments will use xv6, a teaching operating system

simplified OS based on an old Unix version
built by some people at MIT
(though they currently use a RISC V version
instead of the x86-32 version we’ll use)

theoretically actually boots on real 32-bit x86 hardware

…and supports multicore!
(but we’ll run it only single-core, in an emulator)

6

quizzes
there will be online quizzes after each week of lecture

…starting this week (due next Tuesday)

same interface as CS 3330, but no time limit
(haven’t seen it? we’ll talk more on Thursday)

quizzes are open notes, open book, open Internet

7

exams
final exam

current plan: take-home, 24 hours, overlapping official final time

(subject to change, will announce later)

probably mix of quiz-like questions, plus some longer answers

might include some programming exercise or similar

8

late policy
there is a late policy on the website

9

textbook
recommended textbook:
Anderson and Dahlin, Operating Systems: Principles and Practice

no required textbook

alt: Arpaci-Dusseau, Operating Systems: Three Easy Pieces (free
PDFs!)

some topics we’ll cover where this may be primary textbook

alternative: Silberchartz (used in previous semesters)
full version: Operating System Concepts, Ninth Edition

10

cheating: homeworks
don’t

homeworks are individual

no code from prior semesters (other than your own)

no sharing code, pesudocode, detailed descriptions of code

no using code from Internet/etc., with limited exceptions
tiny things solving problems that aren’t point of assignment
…credited where used in your code
e.g. code to split string into array for non-text-parsing assignment
exception: something explicitly referred to by the assignent writeup
in doubt: ask

11

citation
if using small amount of code clearly not point of assignment

e.g. split string into array for non-text-parsing assignment
e.g. filling arrays of pointers from vectors of strings

not sure what counts? ask

then make sure you cite where you got it in your code
should not be other student, etc. — no sharing code

if using code clearly part of major objective of assignment

then don’t
e.g. if you find a shell online, don’t use it solve the shell assignment

12

cheating: quizzes
don’t

quizzes: also individual

don’t share answers

don’t IM people for answers

don’t ask on StackOverflow for answers

13

waitlisted?
if you want an exception, please explain why not Prof. Lin’s section

14

getting help
Piazza

TA and my office hours (will be posted soon)

emailing me

15

history: computer operator

via National Library of Medicine; computer operators operating an Honeywell 800 16

OS definition ambiguity
different exact defintions

‘part of OS’ v. ‘just a program/library’
example: code to allow moving windows on the screen part of the OS?
example: code to support printers is part of the OS?

we’ll not sweat the details — give general, common principles

17

what is an operating system?
software that:

Anderson-Dahlin manages a computer’s resources

Arpaci-Dusseau provides ‘virtual machine’: more convenient than real
machine

18

OS roles
Anderson-Dahlin’s taxonomy of things OS’s do

referee — resource sharing, protection, isolation

illusionist — clean, easy abstractions

glue — common services
storage, window systems, authorization, networking, …

19

OS as abstraction layer
app 1 app 2 app 3

operating system

hardware

20

the virtual machine interface
application
operating system
hardware

virtual machine interface
physical machine interface

imitate physical interface
(of some real hardware)

system virtual machine
(VirtualBox, VMWare, Hyper-V, …)

chosen for convenience
(of applications)

process virtual machine
(typical operating systems)

21

system virtual machines
run entire operating systems

for OS development, portability

interface ≈ hardware interface (but maybe not the real hardware)
aid reusing existing raw hardware-targeted code
different “application programmer”

22

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPUs)
no matter number of CPUs
memory allocation functions
no worries about organization of “real” memory
files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

23

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPUs)
no matter number of CPUs

memory allocation functions
no worries about organization of “real” memory
files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

23

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPUs)
no matter number of CPUs

memory allocation functions
no worries about organization of “real” memory

files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

23

process virtual machine
process VM real hardware
thread processors
memory allocation page tables
files devices
… …

(virtually) infinite “threads” (∼ virtual CPUs)
no matter number of CPUs
memory allocation functions
no worries about organization of “real” memory

files — open/read/write/close interface
no details of hard drive operation
or keyboard operation or …

23

The Process
process = thread(s) + address space + …

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

24

the abstract virtual machine
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

25

abstract VM: application view
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating systemthe application’s “machine” is the operating system

no hardware I/O details visible — future-proof

more featureful interfaces than real hardware

26

abstract VM: OS view
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …operating system’s job: translate one interface to another

27

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

28

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

28

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

28

program → process → CPU and memory
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

process app 1’s memory

app 1’s registers

application 2

process

28

files → input/output
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

files

29

security and protection
applications

OS’s interface threads, address spaces,
processes, files, sockets, …

operating system

hardware interface interrupts, memory addresses, special registers,
memory-mapped devices, I/O buses, …

hardware CPU
memory

keyboard/mouse monitor disks network …

application 1

segmentation fault

30

goal: protection
run multiple applications, and …

keep them from crashing the OS

keep them from crashing each other

(keep parts of OS from crashing other parts?)

31

mechanism 1: dual-mode operation
processor has two modes: kernel (privileged) and user

some operations require kernel mode

OS controls what runs in kernel mode

32

mechanism 2: address translation

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

33

aside: alternate mechanisms
dual mode operation and address translation are common today

…so we’ll talk about them a lot

not the only ways to implement operating system features
(plausibly not even the most efficient…)

34

problem: OS needs to respond to events
keypress happens?

program using CPU for too long?

…

hardware support for running OS: exception
need hardware support because CPU is running application instructions

35

problem: OS needs to respond to events
keypress happens?

program using CPU for too long?

…

hardware support for running OS: exception
need hardware support because CPU is running application instructions

35

exceptions and dual-mode operation
rule: user code always runs in user mode

rule: only OS code ever runs in kernel mode

on exception: changes from user mode to kernel mode

…and is only mechanism for doing so
how OS controls what runs in kernel mode

36

exception terminology
CS 3330 terms:

interrupt: triggered by external event
timer, keyboard, network, …

fault: triggered by program doing something “bad”
invalid memory access, divide-by-zero, …

traps: triggered by explicit program action
system calls

aborts: something in the hardware broke

37

xv6 exception terms
everything is a called a trap

or sometimes an interrupt

no real distinction in name about kinds

38

real world exception terms
it’s all over the place…

context clues

39

kernel services
allocating memory? (change address space)

reading/writing to file? (communicate with hard drive)

read input? (communicate with keyboard)

all need privileged instructions!

need to run code in kernel mode

40

hardware mechanism: deliberate exceptions
some instructions exist to trigger exceptions

still works like normal exception
starts executing OS-chosen handler
…in kernel mode

allows program requests privilieged instructions
OS handler decides what program can request
OS handler decides format of requests

41

exercise: how many exceptions?
single-core OS with processes A, B, C

running process A

A prompts for input, then

A waits to read a keypress

while A is waiting for the keypress the OS runs B, then C

then keypress happens, and OS switches to A immediately

then A exits

exercise: how many exceptions?
42

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

43

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

43

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

43

system call timeline (x86-64 Linux)

‘priviliged’ operations
prohibited

‘priviliged’ operations
allowed

(change memory layout, I/O, exceptions)

/* set arguments in registers */
mov $SYS_write, %rax
mov $FILENO_stdout, %rsi
mov $buffer, %rdi
mov $BUFFER_LEN, %r8
/* trigger exception */
syscall // special instruction

syscall_handler:
/* ... save registers and

actually do read and
set return value ... */

/* go back to "user" code */
iret // special instruction

// now use return value
testq %rax, %rax
...

in user mode
(the standard library)

in kernel mode
(the “kernel”)

hardware knows to go here
because of pointer set during boot

43

the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

44

the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

44

the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

44

aside: is the OS the kernel?
OS = stuff that runs in kernel mode?

OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries + utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is

each piece can be replaced separately…

45

xv6
we will be using an teaching OS called “xv6”

based on Sixth Edition Unix

modified to be multicore and use 32-bit x86 (not PDP-11)

46

xv6 setup/assignment
first assignment — adding two simple xv6 system calls

includes xv6 download instructions

and link to xv6 book

47

xv6 technical requirements
you will need a Linux environment

we will supply one (VM on website), or get your own
(it’s probably possible to use OS X, but you need a cross-compiler and
we don’t have instructions)

…with qemu installed
qemu (for us) = emulator for 32-bit x86 system
Ubuntu/Debian package qemu-system-i386

48

first assignment
get compiled and xv6 working

…toolkit uses an emulator
could run on real hardware or a standard VM, but a lot of details
also, emulator lets you use GDB

49

xv6: what’s included
Unix-like kernel

very small set of syscalls
some less featureful (e.g. exit without exit status)

userspace library
very limited

userspace programs
command line, ls, mkdir, echo, cat, etc.
some self-testing programs

50

xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

51

xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

51

xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

51

xv6 demo

52

53

backup slides

54

common goal: hide complexity
hiding complexity

competing applications — failures, malicious applications
text editor shouldn’t need to know if browser is running

varying hardware — diverse and changing interfaces
different keyboard interfaces, disk interfaces, video interfaces, etc.
applications shouldn’t change

55

common goal: hide complexity
hiding complexity

competing applications — failures, malicious applications
text editor shouldn’t need to know if browser is running

varying hardware — diverse and changing interfaces
different keyboard interfaces, disk interfaces, video interfaces, etc.
applications shouldn’t change

55

common goal: for application programmer
write once for lots of hardware

avoid reimplementing common functionality

don’t worry about other programs

56

	logistics
	what is an operating system?
	the process virtual machine concept
	process = thread + address space
	process VM specifics

	address spaces and dual-mode operation
	system calls
	exception counting exercise
	system call sketch

	the Unix design and xv6
	xv6: what is, setup
	xv6: things included

	backup slides
	hiding complexity

