
system calls / processes

1



last time
OS definitions

abstract + share resources
“virutal machine” idea

user versus kernel mode
“in kernel mode” bit in hardware
kernel mode = sensitive operations allowed
also kernel = part of OS that runs in kernel mode + loaded all the time

exception
hardware mechanism to jump to OS code
also switches from user to kernel mode
deliberately triggered (call OS), from external devices, from errors

system calls — deliberate exceptions
2



quiz demo

3



the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

4



the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

4



the classic Unix design
applications
standard library functions / shell commands
standard libraries and
utility programs
system call interface

kernel

hardware interface

hardware

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

4



aside: is the OS the kernel?
OS = stuff that runs in kernel mode?

OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries + utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is

each piece can be replaced separately…

5



xv6: what’s included
Unix-like kernel

very small set of syscalls
some less featureful (e.g. exit without exit status)

userspace library
very limited

userspace programs
command line, ls, mkdir, echo, cat, etc.
some self-testing programs

6



xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

7



xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

7



xv6: echo.c
#include "types.h"
#include "stat.h"
#include "user.h"

int
main(int argc, char *argv[])
{
int i;

for(i = 1; i < argc; i++)
printf(1, "%s%s", argv[i], i+1 < argc ? " " : "\n");

exit();
}

7



xv6 demo

8



xv6 demo

9



write syscall in xv6

user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

12



write syscall in xv6
user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

12



write syscall in xv6: user mode

...
write(1,

"Hello, World!\n",
14);

...

main.c
...
#define SYS_write 16
...
#define T_SYSCALL 64
...

syscall.h / traps.h

(partial, after macro replacement)
.globl write
write:

movl $SYS_write, %eax
int $T_SYSCALL
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (64 in this case) — type of exception
xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention (arguments on stack)

14



write syscall in xv6: user mode

...
write(1,

"Hello, World!\n",
14);

...

main.c
...
#define SYS_write 16
...
#define T_SYSCALL 64
...

syscall.h / traps.h

(partial, after macro replacement)
.globl write
write:

movl $SYS_write, %eax
int $T_SYSCALL
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (64 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention (arguments on stack)

14



write syscall in xv6: user mode

...
write(1,

"Hello, World!\n",
14);

...

main.c
...
#define SYS_write 16
...
#define T_SYSCALL 64
...

syscall.h / traps.h

(partial, after macro replacement)
.globl write
write:

movl $SYS_write, %eax
int $T_SYSCALL
ret

usys.S

interrupt — trigger an exception similar to a keypress
parameter (64 in this case) — type of exception

xv6 syscall calling convention:
eax = syscall number
otherwise: same as 32-bit x86 calling convention (arguments on stack)

14



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

15



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

15



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

15



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

15



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

15



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

15



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

15



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

con: makes writing system calls safely more complicated
(what if keypress handler runs during system call?)

pro: slow system calls don’t stop timers, keypresses, etc. from working

non-system call exceptions: interrupts disabled

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

16



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall

vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

17



write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

18



write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c
struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

18



write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

18



write syscall in xv6: the trap function
void
trap(struct trapframe *tf)
{
if(tf−>trapno == T_SYSCALL){

if(myproc()−>killed)
exit();

myproc()−>tf = tf;
syscall();
if(myproc()−>killed)

exit();
return;

}
...

}

trap.c

struct trapframe — set by assembly
interrupt type, application registers, …
example: tf−>eax = old value of eax

myproc() — pseudo-global variable
represents currently running process

much more on this later in semester

syscall() — actual implementations
uses myproc()->tf to determine
what operation to do for program

18



write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

19



write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

19



write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

19



write syscall in xv6: the syscall function
static int (*syscalls[])(void) = {
...
[SYS_write] sys_write,
...
};

...

void
syscall(void)
{
...
num = curproc−>tf−>eax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {

curproc−>tf−>eax = syscalls[num]();
} else {

...

syscall.c

array of functions — one for syscall

‘[number] value’: syscalls[number] = value

(if system call number in range)
call sys_…function from table
store result in user’s eax register

result assigned to eax
(assembly code this returns to
copies tf−>eax into %eax)

19



write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

20



write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

20



write syscall in xv6: sys_write
int
sys_write(void)
{
struct file *f;
int n;
char *p;

if(argfd(0, 0, &f) < 0 || argint(2, &n) < 0 || argptr(1, &p, n) < 0)
return −1;

return filewrite(f, p, n);
}

sysfile.c

utility functions that read arguments from user’s stack
returns -1 on error (e.g. stack pointer invalid)
(more on this later)
(note: 32-bit x86 calling convention puts all args on stack)

actual internal function that implements writing to a file
(the terminal counts as a file)

20



write syscall in xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
...
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

lidt —
function (in x86.h) wrapping lidt instruction

sets the interrupt descriptor table to idt
idt = array of pointers to handler functions for each exception type
(plus a few bits of information about those handler functions)

(from mmu.h):
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \

set the T_SYSCALL interrupt to
be callable from user mode via int instruction
(otherwise: triggers fault like privileged instruction)

set it to use the kernel “code segment”
meaning: run in kernel mode
(yes, code segments specifies more than that — nothing we care about)

1: do not disable interrupts during syscalls
e.g. keypress/timer handling can interrupt slow syscall
vectors[T_SYSCALL] — OS function for processor to run
set to pointer to assembly function vector64
eventually calls C function trap

trap returns to alltraps
alltraps restores registers from tf, then returns to user-mode

vector64:
pushl $0
pushl $64
jmp alltraps

...

vectors.S
hardware jumps here

alltraps:
...
call trap
...
iret

trapasm.S
void
trap(struct trapframe *tf)
{
...

trap.c

21



write syscall in xv6
user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

22



write syscall in xv6

user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

23



xv6intro homework
get familiar with xv6 OS

add a new system call: writecount()

returns total number of times write call happened

add a new system call: setwritecount(new_count)

change the counter used by set writecount()

should continue counting number of write calls starting with new
count

24



homework steps
system call implementation: sys_writecount

hint in writeup: imitate sys_uptime
need a counter for number of writes

add writecount to several tables/lists
(list of handlers, list of library functions to create, etc.)
recommendation: imitate how other system calls are listed

create userspace program(s) that calls writecount
recommendation: copy from given programs

repeat, adding setwritecount
see, e.g., sys_kill for example of retrieving argument

25



note on locks
some existing code we say to imitate uses acquire/release

you do not have to do this

primarily to handle multiple cores

26



address translation

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

28



xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications
kernel stack allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per user thread
(plus extra stack for switching threads)

special register:
what stack for exception handler?
(stack changed by CPU (x86 feature)
along with saving old PC, etc.
xv6 sets register on thread switch)

29



xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications

kernel stack allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per user thread
(plus extra stack for switching threads)

special register:
what stack for exception handler?
(stack changed by CPU (x86 feature)
along with saving old PC, etc.
xv6 sets register on thread switch)

29



xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications

kernel stack allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per user thread
(plus extra stack for switching threads)

special register:
what stack for exception handler?
(stack changed by CPU (x86 feature)
along with saving old PC, etc.
xv6 sets register on thread switch)

29



xv6 memory layout

0

User data

User text

User stack

Program data & heap

+ 0x100000

Kernel text

end

KERNBASE

Kernel data

4 Gig

0

RW--

RW-

RWU

Device memory

0xFE000000

Free memory

RW-

R--

Virtual

0x100000

PHYSTOP

Unused if less than 2 Gig
 of physical memory

Extended memory

640K
I/O space

Base memory

Physical
4 Gig

RWU

RWU

PAGESIZE

RW-

At most 2 Gig

Memory-mapped
32-bit I/O devices

Unused if less than 2 Gig
 of physical memory

larger addresses are for kernel
(accessible in kernel mode only)

smaller addresses are for applications

kernel stacks allocated here

processor switches stacks
when execption/interrupt/…happens
location of stack stored
in special “task state selector”

one kernel stack per user thread
(plus extra stack for switching threads)

special register:
what stack for exception handler?
(stack changed by CPU (x86 feature)
along with saving old PC, etc.
xv6 sets register on thread switch)

29



separate stacks: design decision
many, but not all OSes use separate kernel stacks per user thread

makes writing system call handlers, etc. easier
keep data on stack, even if system call involves waiting for a while
possibly easier to figure out how big the stack should be?
if only one kernel stack: need to save info outside stack while waiting

…but uses more space
xv6: extra 4KB of storage per thread/process

alternative: one kernel stack per core

30



aside: stack switching with nested exceptions
not nested: system call or other exception in user mode

start in kernel at top of kernel stack for current thread/process

nested: exception (e.g. timer interrupt) during system call

continues using current kernel stack with same stack pointer

(processor tracks that it switched already)

31



write syscall in xv6
user mode
+ stack

kernel mode
+ stack

user program

syscall wrapper (int $64)

function call: write()

interrupt table
HW does lookup

trigger exception

assembly func: vector64()

HW switches stacks + calls
C function: trap()

asm saves regs
(struct trapframe)

C function: syscall()

C function: sys_write()
read args from user stack

using syscall # from eax

return from interrupt
HW switches stacks

return via trap()

32



non-system call exceptions
xv6 handles many kinds of exceptions other than system calls

recall: our orignal examples of why hardware had exceptions

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory, divide by zero
xv6’s action: kill the program

I/O — I/O device indicates that it requires OS action
communicate with I/O device that now has data ready
possibly wake up waiting programs

33



aside: interrupt descriptor table
x86’s interrupt descriptor table has an entry for each kind of
exception

segmentation fault
timer expired (“your program ran too long”)
divide-by-zero
system calls
…

shown earlier: being set for syscalls — SETGATE macro

xv6 sets all the table entries

…and they always call the trap() function
xv6 design choice: could have separate functions for each

34



xv6: interrupt table setup
...
lidt(idt, sizeof(idt));
for (int i = 0; i < 256; i++)
SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);

SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
...

trap.c (run on boot)

set every entry of interrupt (descriptor) table
to assembly function vectors[i] that
saves registers, then calls trap()

35



non-system call exceptions
xv6 handles many kinds of exceptions other than system calls

recall: our orignal examples of why hardware had exceptions

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory, divide by zero
xv6’s action: kill the program

I/O — I/O device indicates that it requires OS action
communicate with I/O device that now has data ready
possibly wake up waiting programs

36



xv6: faults
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno) {
...
default:

... // (not shown here: similar code for errors in kernel itself)
cprintf("pid %d %s: trap %d err %d on cpu %d "

"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;
}

}

exception not otherwise handled
(example: invalid memory access, divide-by-zero)
print message and kill running program
assume it screwed up

prints out trap number
can lookup in traps.h
more featureful OS would lookup the name for you

37



xv6: faults
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno) {
...
default:

... // (not shown here: similar code for errors in kernel itself)
cprintf("pid %d %s: trap %d err %d on cpu %d "

"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;
}

}

exception not otherwise handled
(example: invalid memory access, divide-by-zero)
print message and kill running program
assume it screwed up

prints out trap number
can lookup in traps.h
more featureful OS would lookup the name for you

37



non-system call exceptions
xv6 handles many kinds of exceptions other than system calls

recall: our orignal examples of why hardware had exceptions

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory, divide by zero
xv6’s action: kill the program

I/O — I/O device indicates that it requires OS action
communicate with I/O device that now has data ready
possibly wake up waiting programs

38



xv6: I/O
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno) {
...
case T_IRQ0 + IRQ_IDE:

ideintr();
lapiceoi();
break;

...
case T_IRQ0 + IRQ_KBD:

kbdintr();
lapiceoi();
break;

case T_IRQ0 + IRQ_COM1:
uartintr();
lapiceoi();
break;

ide = disk interface
kbd = keyboard
uart = serial port (external terminal)

exception indicates: data now ready
handlers arrange for data to be sent
to appropriate application(s)

separate from system call
system call:
application indicates interest in I/O

these exceptions:
device indicates interest in I/O

39



xv6: I/O
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno) {
...
case T_IRQ0 + IRQ_IDE:

ideintr();
lapiceoi();
break;

...
case T_IRQ0 + IRQ_KBD:

kbdintr();
lapiceoi();
break;

case T_IRQ0 + IRQ_COM1:
uartintr();
lapiceoi();
break;

ide = disk interface
kbd = keyboard
uart = serial port (external terminal)

exception indicates: data now ready
handlers arrange for data to be sent
to appropriate application(s)

separate from system call
system call:
application indicates interest in I/O

these exceptions:
device indicates interest in I/O

39



non-system call exceptions
xv6 handles many kinds of exceptions other than system calls

recall: our orignal examples of why hardware had exceptions

timer interrupt — ‘tick’ from constantly running timer
make sure infinite loop doesn’t hog CPU
check for programs waiting for time to pass

faults — e.g. access invalid memory, divide by zero
xv6’s action: kill the program

I/O — I/O device indicates that it requires OS action
communicate with I/O device that now has data ready
possibly wake up waiting programs

40



xv6: timer interrupt
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)
acquire/release — related to synchronization (later)

41



xv6: timer interrupt
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)
acquire/release — related to synchronization (later)

41



xv6: timer interrupt
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)
acquire/release — related to synchronization (later)

41



xv6: timer interrupt
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)

acquire/release — related to synchronization (later)

41



xv6: timer interrupt
void
trap(struct trapframe *tf)
{

...
switch(tf−>trapno){
case T_IRQ0 + IRQ_TIMER:

if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);

}
lapiceoi();
break;

...
// Force process to give up CPU on clock tick.
...
if(myproc() && myproc()−>state == RUNNING &&

tf−>trapno == T_IRQ0+IRQ_TIMER)
yield();

...
}

on timer interrupt
(trigger periodically by external timer):
if a process is running
yield = maybe switch to different program

on timer interrupt:
wakeup — handle waiting processes
certain amount of time
(sleep system call)

lapiceoi — tell hardware we have handled this interrupt
(needed for all interrupts from ‘external’ devices)

acquire/release — related to synchronization (later)

41



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

42



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

42



OS and time multiplexing
starts running instead of normal program via exception

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

43



context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

address space = page table base pointer

44



contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

45



contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

xv6: A’s registers saved by
exception handler
into “trapframe”
on A’s kernel stack

46



contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory
xv6: A’s registers saved by
exception handler
into “trapframe”
on A’s kernel stack

46



exercise: counting context switches
two active processes:

A: running infinite loop
B: described below

process B asks to read from from the keyboard

after input is available, B reads from a file

then, B does a computation and writes the result to the screen

how many context switches do we expect?

how many system calls do we expect?
your answers can be ranges

47



counting system calls
(no system calls from A)

B: read from keyboard
maybe more than one — lots to read?

B: read from file
maybe more than one — opening file + lots to read?

B: write to screen
maybe more than one — lots to write?

(3 or more from B)

48



counting context switches
B makes system call to read from keyboard

(1) switch to A while B waits

keyboard input: B can run

(2) switch to B to handle input

B makes system call to read from file
(3?) switch to A while waiting for disk?

if data from file not available right away

(4) switch to B to do computation + write system call

+ maybe switch between A + B while both are computing?
49



xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

50



xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

51



xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

52



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

54



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

54



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

54



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

54



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

55



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control blocksave/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

55



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

55



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

55



swtch prototype
void swtch(struct context **old, struct context *new);

save current context into *old

start running context from new

trick: struct context* = thread’s stack pointer

top of stack contains saved registers, etc.

56



swtch prototype
void swtch(struct context **old, struct context *new);

save current context into *old

start running context from new

trick: struct context* = thread’s stack pointer

top of stack contains saved registers, etc.

56



thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

57



thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

57



thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

57



thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

57



thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

57



thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

57



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →

SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →

SP →

SP →
struct context

(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →

SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →

SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →

SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →

SP →

SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →

SP →

SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →

SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

58



thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

59



thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

59



thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, edi

other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

59



thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, edi

other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

59



thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

59



thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

59



the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

other code (not shown) handles setting address space

60



the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

other code (not shown) handles setting address space

60



xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

61



missing pieces
showed how we change kernel registers, stacks, program counter

not everything:

trap handler saving/restoring registers:
before swtch: saving user registers before calling trap()
after swtch: restoring user registers after returning from trap()

changing address spaces: switchuvm
changes address translation mapping
changes stack pointer for HW to use for exceptions

still missing: starting new thread?

62



missing pieces
showed how we change kernel registers, stacks, program counter

not everything:

trap handler saving/restoring registers:
before swtch: saving user registers before calling trap()
after swtch: restoring user registers after returning from trap()

changing address spaces: switchuvm
changes address translation mapping
changes stack pointer for HW to use for exceptions

still missing: starting new thread?
62



exercise
suppose xv6 is running this loop.exe:
main:

mov $0, %eax // eax ← 0
start_loop:

add $1, %eax // eax ← eax + 1
jmp start_loop // goto start_loop

when xv6 switches away from this program, where is the value of
loop.exe’s eax stored?
A. loop.exe’s user stack E. loop.exe’s heap
B. loop.exe’s kernel stack F. a special register
C. the user stack of the program switched to G. elsewhere
D. the kernel stack for the program switched to

63



exercise (alternative)
suppose xv6 is running this loop.exe:
main:

mov $0, %eax // eax ← 0
start_loop:

add $1, %eax // eax ← eax + 1
jmp start_loop // goto start_loop

when xv6 switches away from this program, where is the value
loop.exe’s program counter had when it was last running in user
mode stored?
A. loop.exe’s user stack E. loop.exe’s heap
B. loop.exe’s kernel stack F. a special register
C. the user stack of the program switched to G. elsewhere
D. the kernel stack for the program switched to

64



first call to swtch?
one thread calls swtch and

…return from another thread’s call to swtch

…using information on that thread’s stack

what about switching to a new thread?

trick: setup stack as if in the middle of swtch
write saved registers + return address onto stack

avoids special code to swtch to new thread
(in exchange for special code to create thread)

65



first call to swtch?
one thread calls swtch and

…return from another thread’s call to swtch

…using information on that thread’s stack

what about switching to a new thread?

trick: setup stack as if in the middle of swtch
write saved registers + return address onto stack

avoids special code to swtch to new thread
(in exchange for special code to create thread)

65



creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
*(uint*)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

66



creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
*(uint*)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

66



creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
*(uint*)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

66



creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
*(uint*)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returns

initial code to run
when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

66



creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
*(uint*)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returns

initial code to run
when starting a new process

(fork = process creation system call)

saved registers (incl. return address)
for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

66



creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
*(uint*)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)

saved registers (incl. return address)
for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

66



creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
*(uint*)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

66



process control block
some data structure needed to represent a process

called Process Control Block

xv6: struct proc

67



process control block
some data structure needed to represent a process

called Process Control Block

xv6: struct proc

67



xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

68



xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

68



xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

68



xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

68



xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

68



xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

68



xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

68



process control blocks generally
contains process’s context(s) (registers, PC, …)

if context is not on a CPU
(in xv6: pointers to these, actual location: process’s kernel stack)

process’s status — running, waiting, etc.

information for system calls, etc.
open files
memory allocations
process IDs
related processes

69



xv6 myproc
xv6 function: myproc()

retrieves pointer to currently running struct proc

70



myproc: using a global variable
struct cpu cpus[NCPU];

struct proc*
myproc(void) {
struct cpu *c;
...
c = mycpu(); /* finds entry of cpus array

using special "ID" register
as array index */

p = c−>proc;
...
return p;

}

71



this class: focus on Unix
Unix-like OSes will be our focus

we have source code

used to from 2150, etc.?

have been around for a while

xv6 imitates Unix

72



Unix history

OpenServer
6.x

UnixWare
7.x

(System V
R5)

HP-UX
11i+

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

Open Source

Mixed/Shared Source

Closed Source

No future releases

HP-UX
1.0 to 1.2

OpenSolaris
& derivatives

(illumos, etc.)

System III

System V
R1 to R2

OpenServer
5.0.5 to 5.0.7

OpenServer
5.0 to 5.04

SCO Unix
3.2.4

SCO Xenix
V/386

SCO Xenix
V/386

SCO Xenix
V/286

SCO Xenix

Xenix
3.0

Xenix
1.0 to 2.3

PWB/Unix

AIX
1.0

AIX
3.0-7.2

OpenBSD
2.3-6.1

OpenBSD
1.0 to 2.2

SunOS
1.2 to 3.0

SunOS
1 to 1.1

Unix/32V

Unix
Version 1 to 4

Unix
Version 5 to 6

Unix
Version 7

Unnamed PDP-7 operating system

BSD
1.0 to 2.0

BSD
3.0 to 4.1

BSD 4.2

Unix
Version 8

Unix
9 and 10

(last versions
from

Bell Labs)

NexTSTEP/
OPENSTEP
1.0 to 4.0

Mac OS X
Server

Mac OS X,
OS X,

macOS
10.0 to 10.12

(Darwin
1.2.1 to 17)

Minix
1.x

Minix
2.x

Minix
3.1.0-3.4.0

Linux
2.x

Linux
0.95 to 1.2.x

Linux 0.0.1

BSD
4.4 to

4.4 lite2

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.3-7.1

FreeBSD
1.0 to 
2.2.x

386BSD

BSD NET/2

Solaris
10

Solaris
11.0-11.3

System V
R4

Solaris
2.1 to 9

BSD 4.3

SunOS
4

HP-UX
2.0 to 3.0

HP-UX
6 to 11

System V
R3

UnixWare
1.x to 2.x
(System V

R4.2)

BSD 4.3
Tahoe

BSD 4.3
Reno

FreeBSD
3.0 to 3.2

FreeBSD
3.3-11.x

Linux
3.x

Linux
4.x OpenServer

10.x

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

DragonFly
BSD

1.0 to 4.8

73



POSIX: standardized Unix
Portable Operating System Interface (POSIX)

“standard for Unix”

current version online:
http://pubs.opengroup.org/onlinepubs/9699919799/

(almost) followed by most current Unix-like OSes

…but OSes add extra features

…and POSIX doesn’t specify everything

74



what POSIX defines
POSIX specifies the library and shell interface

source code compatibility

doesn’t care what is/is not a system call…

doesn’t specify binary formats…

idea: write applications for POSIX, recompile and run on all
implementations

this was a very important goal in the 80s/90s
at the time, Linux was very immature

75



76



77



backup slides

78



timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

79



doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

80



doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

81



write syscall in xv6: summary
write function — syscall wrapper uses int $64
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
82



write syscall in xv6: summary
write function — syscall wrapper uses int $64
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
83



write syscall in xv6: summary
write function — syscall wrapper uses int $64
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
84



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

85



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

85



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

85



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp

struct context
(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

85



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

85



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp

← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

85



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp

← %esp

← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

85



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp

← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

86



juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

# Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

# Switch stacks
movl %esp, (%eax)
movl %edx, %esp

# Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

87



kernel-space context switch summary
swtch function

saves registers on current kernel stack
switches to new kernel stack and restores its registers

(later) initial setup — manually construct stack values

88



xv6: keyboard I/O
void
kbdintr(void)
{

consoleintr(kbdgetc);
}
...
void consoleintr(...)
{

...
wakeup(&input.r);

...
}

finds process waiting on console
make it run soon
(xv6 choice: usually not immediately)

89



xv6: keyboard I/O
void
kbdintr(void)
{

consoleintr(kbdgetc);
}
...
void consoleintr(...)
{

...
wakeup(&input.r);

...
}

finds process waiting on console
make it run soon
(xv6 choice: usually not immediately)

89



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay (from loop.exe’s view)
call get_time

// whatever get_time does
subq %rbp, %rax
...

90



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay (from loop.exe’s view)
call get_time

// whatever get_time does
subq %rbp, %rax
...

90



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay (from loop.exe’s view)
call get_time

// whatever get_time does
subq %rbp, %rax
...

90



struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counterfunction to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

91



struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counterfunction to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

91



struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counter

function to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

91



struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counter

function to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

91



xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

92



xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

93



xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

94


	the Unix design and xv6
	xv6: things included

	system calls in xv6
	flow chart for write
	write() walkthrough
	user mode part
	interrupt table and kernel entry
	trap() function
	kernel exit/return

	flow chart (revisited)

	xv6intro homework
	address space

	xv6's address layout
	aside: stack switching and nested exceptions

	swapping stacks from system calls
	other exceptions
	interrupt table setup
	handling faults
	handling I/O
	handling timer interrupt


	context switches, generally
	counting context switches
	xv6 kernel context switches
	overview
	xv6 context location summary
	swtch()
	swtch function: semantics
	swtch function: context format
	swtch function: assembly

	user part
	overall view / missing pieces

	exercise: infinite loop switch storage location
	xv6: thread creation
	process control blocks (intro)
	POSIX and Unix
	backup slides
	setup: infinite loop
	swtch function: stack juggling
	swtch summary?
	slightly more detail on I/O handling
	time multiplexing
	sturct context
	xv6 context location detail


