
context switches / process management

1

last time
user/kernel mode

kernel mode: for OS: I/O, access to other process’s info, etc.
user mode: those things not permitted (go through OS instead)

exceptions: switch to kernel mode, jump to OS
system call: exception triggered deliberately by program

request OS do something on program’s behalf

xv6 system calls
context switches

save state of current thread/program
restore state of another thread/program
in xv6: done by OS only; need to switch to OS first (exception)

always switching between processes
can’t access info about other processes in user mode
(but if already in kernel mode, don’t need to switch again)

2

quiz reliability aside
appears the quiz site sometimes didn’t give
feedback when submitting logged-out of NetBadge

I don’t understand how, but workaround in place

let me know if this affected your quiz score

3

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

4

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

5

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

6

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

8

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

8

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

8

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

8

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

9

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control blocksave/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

9

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

9

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

9

swtch prototype
void swtch(struct context **old, struct context *new);

save current context into *old

start running context from new

trick: struct context* = thread’s stack pointer

top of stack contains saved registers, etc.

10

swtch prototype
void swtch(struct context **old, struct context *new);

save current context into *old

start running context from new

trick: struct context* = thread’s stack pointer

top of stack contains saved registers, etc.

10

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

11

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

11

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

11

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

11

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

11

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

11

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →

SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →

SP →

SP →
struct context

(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →

SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →

SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →

SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →

SP →

SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →

SP →

SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →

SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

12

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

13

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

13

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, edi

other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

13

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, edi

other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

13

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

13

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

13

the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

other code (not shown) handles setting address space

14

the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

other code (not shown) handles setting address space

14

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

15

missing pieces
showed how we change kernel registers, stacks, program counter

not everything:

trap handler saving/restoring registers:
before swtch: saving user registers before calling trap()
after swtch: restoring user registers after returning from trap()

changing address spaces: switchuvm
changes address translation mapping
changes stack pointer for HW to use for exceptions

still missing: starting new thread?

16

missing pieces
showed how we change kernel registers, stacks, program counter

not everything:

trap handler saving/restoring registers:
before swtch: saving user registers before calling trap()
after swtch: restoring user registers after returning from trap()

changing address spaces: switchuvm
changes address translation mapping
changes stack pointer for HW to use for exceptions

still missing: starting new thread?
16

exercise
suppose xv6 is running this loop.exe:
main:

mov $0, %eax // eax ← 0
start_loop:

add $1, %eax // eax ← eax + 1
jmp start_loop // goto start_loop

when xv6 switches away from this program, where is the value of
loop.exe’s eax stored?
A. loop.exe’s user stack E. loop.exe’s heap
B. loop.exe’s kernel stack F. a special register
C. the user stack of the program switched to G. elsewhere
D. the kernel stack for the program switched to

17

exercise (alternative)
suppose xv6 is running this loop.exe:
main:

mov $0, %eax // eax ← 0
start_loop:

add $1, %eax // eax ← eax + 1
jmp start_loop // goto start_loop

when xv6 switches away from this program, where is the value
loop.exe’s program counter had when it was last running in user
mode stored?
A. loop.exe’s user stack E. loop.exe’s heap
B. loop.exe’s kernel stack F. a special register
C. the user stack of the program switched to G. elsewhere
D. the kernel stack for the program switched to

18

first call to swtch?
one thread calls swtch and

…return from another thread’s call to swtch

…using information on that thread’s stack

what about switching to a new thread?

trick: setup stack as if in the middle of swtch
write saved registers + return address onto stack

avoids special code to swtch to new thread
(in exchange for special code to create thread)

19

first call to swtch?
one thread calls swtch and

…return from another thread’s call to swtch

…using information on that thread’s stack

what about switching to a new thread?

trick: setup stack as if in the middle of swtch
write saved registers + return address onto stack

avoids special code to swtch to new thread
(in exchange for special code to create thread)

19

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

20

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

20

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

20

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returns

initial code to run
when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

20

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returns

initial code to run
when starting a new process

(fork = process creation system call)

saved registers (incl. return address)
for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

20

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)

saved registers (incl. return address)
for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

20

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

20

process control block
some data structure needed to represent a process

called Process Control Block

xv6: struct proc

21

process control block
some data structure needed to represent a process

called Process Control Block

xv6: struct proc

21

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

22

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

22

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

22

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

22

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

22

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

22

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

22

process control blocks generally
contains process’s context(s) (registers, PC, …)

if context is not on a CPU
(in xv6: pointers to these, actual location: process’s kernel stack)

process’s status — running, waiting, etc.

information for system calls, etc.
open files
memory allocations
process IDs
related processes

23

xv6 myproc
xv6 function: myproc()

retrieves pointer to currently running struct proc

24

myproc: using a global variable
struct cpu cpus[NCPU];

struct proc*
myproc(void) {
struct cpu *c;
...
c = mycpu(); /* finds entry of cpus array

using special "ID" register
as array index */

p = c−>proc;
...
return p;

}

25

this class: focus on Unix
Unix-like OSes will be our focus

we have source code

used to from 2150, etc.?

have been around for a while

xv6 imitates Unix

26

Unix history

OpenServer
6.x

UnixWare
7.x

(System V
R5)

HP-UX
11i+

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

Open Source

Mixed/Shared Source

Closed Source

No future releases

HP-UX
1.0 to 1.2

OpenSolaris
& derivatives

(illumos, etc.)

System III

System V
R1 to R2

OpenServer
5.0.5 to 5.0.7

OpenServer
5.0 to 5.04

SCO Unix
3.2.4

SCO Xenix
V/386

SCO Xenix
V/386

SCO Xenix
V/286

SCO Xenix

Xenix
3.0

Xenix
1.0 to 2.3

PWB/Unix

AIX
1.0

AIX
3.0-7.2

OpenBSD
2.3-6.1

OpenBSD
1.0 to 2.2

SunOS
1.2 to 3.0

SunOS
1 to 1.1

Unix/32V

Unix
Version 1 to 4

Unix
Version 5 to 6

Unix
Version 7

Unnamed PDP-7 operating system

BSD
1.0 to 2.0

BSD
3.0 to 4.1

BSD 4.2

Unix
Version 8

Unix
9 and 10

(last versions
from

Bell Labs)

NexTSTEP/
OPENSTEP
1.0 to 4.0

Mac OS X
Server

Mac OS X,
OS X,

macOS
10.0 to 10.12

(Darwin
1.2.1 to 17)

Minix
1.x

Minix
2.x

Minix
3.1.0-3.4.0

Linux
2.x

Linux
0.95 to 1.2.x

Linux 0.0.1

BSD
4.4 to

4.4 lite2

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.3-7.1

FreeBSD
1.0 to
2.2.x

386BSD

BSD NET/2

Solaris
10

Solaris
11.0-11.3

System V
R4

Solaris
2.1 to 9

BSD 4.3

SunOS
4

HP-UX
2.0 to 3.0

HP-UX
6 to 11

System V
R3

UnixWare
1.x to 2.x
(System V

R4.2)

BSD 4.3
Tahoe

BSD 4.3
Reno

FreeBSD
3.0 to 3.2

FreeBSD
3.3-11.x

Linux
3.x

Linux
4.x OpenServer

10.x

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

DragonFly
BSD

1.0 to 4.8

27

POSIX: standardized Unix
Portable Operating System Interface (POSIX)

“standard for Unix”

current version online:
http://pubs.opengroup.org/onlinepubs/9699919799/

(almost) followed by most current Unix-like OSes

…but OSes add extra features

…and POSIX doesn’t specify everything

28

what POSIX defines
POSIX specifies the library and shell interface

source code compatibility

doesn’t care what is/is not a system call…

doesn’t specify binary formats…

idea: write applications for POSIX, recompile and run on all
implementations

this was a very important goal in the 80s/90s
at the time, Linux was very immature

29

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

30

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

31

getpid
pid_t my_pid = getpid();
printf("my pid is %ld\n", (long) my_pid);

32

process ids in ps
cr4bd@machine:~$ ps
PID TTY TIME CMD

14777 pts/3 00:00:00 bash
14798 pts/3 00:00:00 ps

33

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

34

fork
pid_t fork() — copy the current process

returns twice:
in parent (original process): pid of new child process
in child (new process): 0

everything (but pid) duplicated in parent, child:
memory
file descriptors (later)
registers

35

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

36

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy

copy

36

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

36

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

36

fork and PCBs

user regs eax (return val.)=42child (new) pid,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=420,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

36

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

37

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pid

cast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

37

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pid

cast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

37

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

37

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

37

38

backup slides

39

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

40

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

42

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

42

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

42

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

42

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

43

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control blocksave/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

43

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

43

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

43

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ process control block

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ process control block

save/restore
on trap()
entry/exit

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

44

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

45

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

46

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

47

aside: environment variables (1)
key=value pairs associated with every process:
$ printenv
MODULE_VERSION_STACK=3.2.10
MANPATH=:/opt/puppetlabs/puppet/share/man
XDG_SESSION_ID=754
HOSTNAME=labsrv01
SELINUX_ROLE_REQUESTED=
TERM=screen
SHELL=/bin/bash
HISTSIZE=1000
SSH_CLIENT=128.143.67.91 58432 22
SELINUX_USE_CURRENT_RANGE=
QTDIR=/usr/lib64/qt-3.3
OLDPWD=/zf14/cr4bd
QTINC=/usr/lib64/qt-3.3/include
SSH_TTY=/dev/pts/0
QT_GRAPHICSSYSTEM_CHECKED=1
USER=cr4bd
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:
MODULE_VERSION=3.2.10
MAIL=/var/spool/mail/cr4bd
PATH=/zf14/cr4bd/.cargo/bin:/zf14/cr4bd/bin:/usr/lib64/qt-3.3/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/puppetlabs/bin:/usr/cs/contrib/bin:.
PWD=/zf14/cr4bd
LANG=en_US.UTF-8
MODULEPATH=/sw/centos/Modules/modulefiles:/sw/linux-any/Modules/modulefiles
LOADEDMODULES=
KDEDIRS=/usr
…
_=/usr/bin/printenv

48

aside: environment variables (2)
environment variable library functions:

getenv("KEY") → value
putenv("KEY=value") (sets KEY to value)
setenv("KEY", "value") (sets KEY to value)

int execve(char *path, char **argv, char **envp)

char *envp[] = { "KEY1=value1", "KEY2=value2", NULL };
char *argv[] = { "somecommand", "some arg", NULL };
execve("/path/to/somecommand", argv, envp);

normal exec versions — keep same environment variables

49

aside: environment variables (3)
interpretation up to programs, but common ones…

PATH=/bin:/usr/bin
to run a program ‘foo’, look for an executable in /bin/foo, then
/usr/bin/foo

HOME=/zf14/cr4bd
current user’s home directory is ‘/zf14/cr4bd’

TERM=screen-256color
your output goes to a ‘screen-256color’-style terminal

…

50

‘waiting’ without waiting
#include <sys/wait.h>
...
pid_t return_value = waitpid(child_pid, &status, WNOHANG);
if (return_value == (pid_t) 0) {
/* child process not done yet */

} else if (child_pid == (pid_t) −1) {
/* error */

} else {
/* handle child_pid exiting */

}

51

running in background
$./long_computation >tmp.txt &
[1] 4049
$...
[1]+ Done ./long_computation > tmp.txt
$ cat tmp.txt
the result is ...

& — run a program in “background”

initially output PID (above: 4049)

print out after terminated
one way: use waitpid with option saying “don’t wait”

52

execv and const
int execv(const char *path, char *const *argv);

argv is a pointer to constant pointer to char

probably should be a pointer to constant pointer to constant char

…this causes some awkwardness:
const char *array[] = { /* ... */ };
execv(path, array); // ERROR

solution: cast
const char *array[] = { /* ... */ };
execv(path, (char **) array); // or (char * const *)

53

	overview
	xv6 context location summary
	swtch()
	swtch function: semantics
	swtch function: context format
	swtch function: assembly

	user part
	overall view / missing pieces
	exercise: infinite loop switch storage location
	xv6: thread creation
	process control blocks (intro)
	POSIX and Unix
	process creation and management
	getpid
	fork

	backup slides
	xv6 context location detail
	aside: environment variables
	waitpid WNOHANG
	shell: background programs
	aside: on casting

