
1

last time
xv6 context switch

user register save/restore: via exception stuff
kernel register save/restore: save to kernel stack
push/pop registers using calling convention + custom asm
swtch function: assembly for switching stacks

new xv6 threads: manual construct new kernel stack
as if: new process in middle of swtch call

process control blocks
files, memory, process ID, …

2

last time (2)
POSIX standard

history: many variants of Unix
common source-code compatible interface

fork
basically deep copy of process control block
returns twice (copied saved user registers)
different return value in parent (old) and child (copy)

3

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

4

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

5

fork
pid_t fork() — copy the current process

returns twice:
in parent (original process): pid of new child process
in child (new process): 0

everything (but pid) duplicated in parent, child:
memory
file descriptors (later)
registers

6

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

7

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy

copy

7

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

7

fork and PCBs

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=42,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

7

fork and PCBs

user regs eax (return val.)=42child (new) pid,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

parent process control block memory

user regs eax (return val.)=420,
ecx=133, …

kernel stack
user memory
open files fd 0: …

fd 1: …
… …

child process control blockcopy
copy

7

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

8

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pid

cast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

8

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pid

cast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

8

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

8

fork example
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n", (int) my_pid, (int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n", (int) my_pid);

} else {
perror("Fork failed");

}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

8

a fork question
int main() {

pid_t pid = fork();
if (pid == 0) {

printf("In child\n");
} else {

printf("Child %d\n", pid);
}
printf("Done!\n");

}

Exercise: Suppose the pid of the parent process is 99 and child is
100. Give two possible outputs. (Assume no crashes, etc.)

parent child parent child parent

Child 100
In child
Done!
Done!

parent child parent

In child
Done!
Child 100
Done!

9

a fork question
int main() {

pid_t pid = fork();
if (pid == 0) {

printf("In child\n");
} else {

printf("Child %d\n", pid);
}
printf("Done!\n");

}

Exercise: Suppose the pid of the parent process is 99 and child is
100. Give two possible outputs. (Assume no crashes, etc.)

parent child parent child parent

Child 100
In child
Done!
Done!

parent child parent

In child
Done!
Child 100
Done! 9

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

10

exec*
exec* — replace current program with new program

* — multiple variants
same pid, new process image

int execv(const char *path, const char **argv)

path: new program to run
argv: array of arguments, termianted by null pointer

11

execv example
...
child_pid = fork();
if (child_pid == 0) {
/* child process */
char *args[] = {"ls", "-l", NULL};
execv("/bin/ls", args);
/* execv doesn't return when it works.

So, if we got here, it failed. */
perror("execv");
exit(1);

} else if (child_pid > 0) {
/* parent process */
...

}

used to compute argv, argc
when program’s main is run

convention: first argument is program name

path of executable to run
need not match first argument
(but probably should match it)

on Unix /bin is a directory
containing many common programs,
including ls (‘list directory’)

12

execv example
...
child_pid = fork();
if (child_pid == 0) {
/* child process */
char *args[] = {"ls", "-l", NULL};
execv("/bin/ls", args);
/* execv doesn't return when it works.

So, if we got here, it failed. */
perror("execv");
exit(1);

} else if (child_pid > 0) {
/* parent process */
...

}

used to compute argv, argc
when program’s main is run

convention: first argument is program name

path of executable to run
need not match first argument
(but probably should match it)

on Unix /bin is a directory
containing many common programs,
including ls (‘list directory’)

12

execv example
...
child_pid = fork();
if (child_pid == 0) {
/* child process */
char *args[] = {"ls", "-l", NULL};
execv("/bin/ls", args);
/* execv doesn't return when it works.

So, if we got here, it failed. */
perror("execv");
exit(1);

} else if (child_pid > 0) {
/* parent process */
...

}

used to compute argv, argc
when program’s main is run

convention: first argument is program name

path of executable to run
need not match first argument
(but probably should match it)

on Unix /bin is a directory
containing many common programs,
including ls (‘list directory’)

12

exec and PCBs

user regs eax=42,
ecx=133, …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

13

exec and PCBs

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

13

exec and PCBs

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

13

exec and PCBs

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

13

exec and PCBs

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

13

why fork/exec?
could just have a function to spawn a new program

Windows CreateProcess(); POSIX’s (rarely used) posix_spawn

some other OSs do this (e.g. Windows)

needs to include API to set new program’s state
e.g. without fork: need function to set new program’s current directory
e.g. with fork: just change your current directory before exec

but allows OS to avoid ‘copy everything’ code
probably makes OS implementation easier

14

posix_spawn
pid_t new_pid;
const char argv[] = { "ls", "-l", NULL };
int error_code = posix_spawn(

&new_pid,
"/bin/ls",
NULL /* null = copy current process's open files;

if not null, do something else */,
NULL /* null = no special settings for new process */,
argv,
NULL /* null = copy current process's "environment variables",

if not null, do something else */
);
if (error_code == 0) {

/* handle error */
}

15

some opinions (via HotOS ’19)

16

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

17

wait/waitpid
pid_t waitpid(pid_t pid, int *status,

int options)

wait for a child process (with pid=pid) to finish

sets *status to its “status information”

pid=-1 → wait for any child process instead

options? see manual page (command man waitpid)
0 — no options

18

exit statuses
int main() {

return 0; /* or exit(0); */
}

19

waitpid example
#include <sys/wait.h>
...
child_pid = fork();
if (child_pid > 0) {

/* Parent process */
int status;
waitpid(child_pid, &status, 0);

} else if (child_pid == 0) {
/* Child process */
...

20

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

21

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

21

aside: signals
signals are a way of communicating between processes

they are also how abnormal termination happens
kernel communicating “something bad happened” → kills program by
default

wait’s status will tell you when and what signal killed a program
constants in signal.h
SIGINT — control-C
SIGTERM — kill command (by default)
SIGSEGV — segmentation fault
SIGBUS — bus error
SIGABRT — abort() library function
…

22

waiting for all children
#include <sys/wait.h>
...
while (true) {
pid_t child_pid = waitpid(−1, &status, 0);
if (child_pid == (pid_t) −1) {

if (errno == ECHILD) {
/* no child process to wait for */
break;

} else {
/* some other error */

}
}
/* handle child_pid exiting */

}

23

typical pattern
parent

fork

waitpid

child process

exec

exit()

24

typical pattern (alt)
parent

fork

waitpid

child process

exec

exit()

25

typical pattern (detail)

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

main() {
…

}

26

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {

waitpid(pid, ...);
...

}

27

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses as processes finish */
while ((pid = waitpid(−1, ...)) != −1) {

handleProcessFinishing(pid);
}

28

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

29

exercise (1)
int main() {

pid_t pids[2]; const char *args[] = {"echo", "ARG", NULL};
const char *extra[] = {"L1", "L2"};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) {

args[1] = extra[i];
execv("/bin/echo", args);

}
}
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}

}

Assuming fork and execv do not fail, which are possible outputs?
A. L1 (newline) L2 D. A and B
B. L1 (newline) L2 (newline) L2 E. A and C
C. L2 (newline) L1 F. all of the above

G. something else
30

exercise (2)
int main() {

pid_t pids[2];
const char *args[] = {"echo", "0", NULL};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) {

execv("/bin/echo", args);
}

}
printf("1\n"); fflush(stdout);
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}
printf("2\n"); fflush(stdout);

}

Assuming fork and execv do not fail, which are possible outputs?
A. 0 (newline) 0 (newline) 1 (newline) 2 E. A, B, and C
B. 0 (newline) 1 (newline) 0 (newline) 2 F. C and D
C. 1 (newline) 0 (newline) 0 (newline) 2 G. all of the above
D. 1 (newline) 0 (newline) 2 (newline) 0 H. something else 31

shell
allow user (= person at keyboard) to run applications

user’s wrapper around process-management functions

upcoming homework — make a simple shell

32

aside: shell forms
POSIX: command line you have used before

also: graphical shells
e.g. OS X Finder, Windows explorer

other types of command lines?

completely different interfaces?

33

some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

34

some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

35

searching for programs
POSIX convention: PATH environment variable

example: /home/cr4bd/bin:/usr/bin:/bin
list of directories to check in order

environment variables = key/value pairs stored with process
by default, left unchanged on execve, fork, etc.

one way to implement: [pseudocode]
for (directory in path) {

execv(directory + "/" + program_name, argv);
}

36

some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

37

some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

38

shell assignment
implement a simple shell that supports redirection and pipeline

(for Linux or another POSIX system — not xv6)

…and prints the exit code of program in the pipeline

simplified parsing: space-seperated:
okay: /bin/ls -1 > tmp.txt
not okay: /bin/ls -l >tmp.txt
okay: /bin/ls -1 | /bin/grep foo > tmp.txt
not okay: /bin/ls -1 |/bin/grep foo >tmp.txt

39

POSIX: everything is a file
the file: one interface for

devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

40

the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

41

the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

41

filesystem abstraction
regular files — named collection of bytes

also: size, modification time, owner, access control info, …

directories — folders containing files and directories
hierarchical naming: /net/zf14/cr4bd/fall2018/cs4414
mostly contains regular files or directories

42

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
...

int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);

43

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

path = filename

e.g. "/foo/bar/file.txt"
file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

44

open: file descriptors
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

return value = file descriptor (or -1 on error)

index into table of open file descriptions for each process

used by system calls that deal with open files

45

implementing file descriptors in xv6 (1)
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

ofile[0] = file descriptor 0

pointer — can be shared between proceses
not part of deep copy fork does

null pointers — no file open with that number

46

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

47

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

47

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

47

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

47

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

47

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

48

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

48

open: flags
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

flags: bitwise or of:
O_RDWR, O_RDONLY, or O_WRONLY

read/write, read-only, write-only
O_APPEND

append to end of file
O_TRUNC

truncate (set length to 0) file if it already exists
O_CREAT

create a new file if one doesn’t exist
(default: file must already exist)

…and more

man 2 open
49

open: mode
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

mode: permissions of newly created file
like numbers provided to chmod command
filtered by a “umask”

simple advice: always use 0666
= readable/writeable by everyone, except where umask prohibits
(typical umask: prohibit other/group writing)

50

close
int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors
that refer to same “open file description”
(e.g. in fork()ed child or created via (later) dup2)

if last file descriptor for open file description, resources deallocated

returns 0 on success

returns -1 on error
e.g. ran out of disk space while finishing saving file

51

shell redirection
./my_program ... < input.txt:

run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo > output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)

52

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
redirection/etc.:

setup stdin/stdout before exec

old memory
discarded

53

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

54

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

54

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

54

typical pattern with redirection

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

parent

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

child
main() {

…
}

55

redirecting with exec
standard output/error/input are files

(C stdout/stderr/stdin; C++ cout/cerr/cin)

(probably after forking) open files to redirect

…and make them be standard output/error/input
using dup2() library call

then exec, preserving new standard output/etc.

56

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

57

reassigning and file table
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

redirect stdout: want: ofile[1] = ofile[opened-fd];
(plus increment reference count, so nothing is deleted early)

but can’t access ofile from userspace

so syscall: dup2(opened-fd, 1);

58

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

59

dup2 example
redirects stdout to output to output.txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",

O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)

do_something_about_error();

dup2(fd, STDOUT_FILENO);
/* now both write(fd, ...) and write(STDOUT_FILENO, ...)

write to output.txt
*/

close(fd); /* only close original, copy still works! */

printf("This will be sent to output.txt.\n");

60

backup slides

61

layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

62

why the extra layer
better (but more complex to implement) interface:

read line
formatted input (scanf, cin into integer, etc.)
formatted output

less system calls (bigger reads/writes) sometimes faster
buffering can combine multiple in/out library calls into one system call

more portable interface
cin, printf, etc. defined by C and C++ standards

63

parent and child processes
every process (but process id 1) has a parent process (getppid())
this is the process that can wait for it
creates tree of processes (Linux pstree command):

64

parent and child questions…
what if parent process exits before child?

child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()s (or equivalent) for child?
child process stays around as a “zombie”
can’t reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails

65

	process creation and management
	fork
	exec
	aside: fork+exec, really?
	wait
	summary diagram
	exercises (fork+exec+wait)

	shells
	shells, the concept
	I/O redirection: syntax, method preview
	pipelines
	assignment preview

	files in POSIX, part 1
	Unix: everything is a file
	open
	interlude: file descriptors
	open flags
	close
	Shell: redirection
	dup2: redirection mechanism

	backup slides
	layers of file interfaces
	parent and child

