
POSIX API 3

1

Changelog
16 Feb 2021 (after lecture): include void* cast in first read() loop
example

1

last time
exec — replace process with different program

fork + exec
make new process with current program
and replace with different program

waitpid

shells, POSIX shell features

POSIX file descriptors
per-process array of open files (files on disk, terminals, …)
convention: 0 = stdin, 1 = stdout, 2 = stderr

2

quiz logistics
extended deadline to 9:15pm b/c server outage

if that doesn’t make up for time lost on Monday, let me know

3

implementing file descriptors in xv6 (1)
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

ofile[0] = file descriptor 0

pointer — can be shared between proceses
not part of deep copy fork does

null pointers — no file open with that number

4

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

5

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

5

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

5

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

5

implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

5

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

6

special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

6

close
int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors
that refer to same “open file description”
(e.g. in fork()ed child or created via (later) dup2)

if last file descriptor for open file description, resources deallocated

returns 0 on success

returns -1 on error
e.g. ran out of disk space while finishing saving file

7

shell redirection
./my_program ... < input.txt:

run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo > output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)

8

exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
redirection/etc.:

setup stdin/stdout before exec

old memory
discarded

9

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

10

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

10

fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

10

typical pattern with redirection

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

parent

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

child
main() {

…
}

11

redirecting with exec
standard output/error/input are files

(C stdout/stderr/stdin; C++ cout/cerr/cin)

(probably after forking) open files to redirect

…and make them be standard output/error/input
using dup2() library call

then exec, preserving new standard output/etc.

12

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

13

reassigning and file table
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

redirect stdout: want: ofile[1] = ofile[opened-fd];
(plus increment reference count, so nothing is deleted early)

but can’t access ofile from userspace

so syscall: dup2(opened-fd, 1);

14

reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

15

dup2 example
redirects stdout to output to output.txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",

O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)

do_something_about_error();

dup2(fd, STDOUT_FILENO);
/* now both write(fd, ...) and write(STDOUT_FILENO, ...)

write to output.txt
*/

close(fd); /* only close original, copy still works! */

printf("This will be sent to output.txt.\n");

16

open/dup/close/etc. and fd array
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};
open: ofile[new_fd] = ...;

dup2(from, to): ofile[to] = ofile[from];

close: ofile[fd] = NULL;

fork:
for (int i = ...)

child−>ofile[i] = parent−>ofile[i];

(plus extra work to avoid leaking memory) 17

read/write
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

18

read’ing one byte at a time
string s;
ssize_t amount_read;
char c;
/* cast to void * not needed in C */
while ((amount_read = read(STDIN_FILENO, (void*) &c, 1)) > 0) {

/* amount_read must be exactly 1 */
s += c;

}
if (amount_read == −1) {

/* some error happened */
perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */

}

19

read/write
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

20

read’ing a fixed amount
ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {

/* cast to void * optional in C */
ssize_t amount_read =

read(STDIN_FILENO,
(void *) (result + offset),
amount_to_read − offset);

if (amount_read < 0) {
perror("read"); /* print error message */
... /* abort??? */

} else {
offset += amount_read;

}
} while (offset != amount_to_read && amount_read != 0);

21

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

22

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

22

write example
/* cast to void * optional in C */
write(STDOUT_FILENO, (void *) "Hello, World!\n", 14);

23

write example (with error checking)
const char *ptr = "Hello, World!\n";
ssize_t remaining = 14;
while (remaining > 0) {

/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,

ptr,
remaining);

if (amount_written < 0) {
perror("write"); /* print error message */
... /* abort??? */

} else {
remaining −= amount_written;
ptr += amount_written;

}
}

24

partial writes
usually only happen on error or interruption

but can request “non-blocking”
(interruption: via signal)

usually : write waits until it completes
= until remaining part fits in buffer in kernel
does not mean data was sent on network, shown to user yet, etc.

25

exercise
int fd = open("output.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666);
write(fd, "A", 1);
dup2(STDOUT_FILENO, 100);
dup2(fd, STDOUT_FILENO);
write(STDOUT_FILENO, "B", 1);
write(fd, "C", 1);
close(fd);
write(STDOUT_FILENO, "D", 1);
write(100, "E", 1);

Assume open() and dup2() do not fail, write() does not fail as
long as the fd it writes to is open, fd 100 was closed and is not what
open returns, and STDOUT_FILENO is initially open. What is written
to output.txt?
A. ABCDE C. ABC E. something else
B. ABCD D. ACD

26

pipes
special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes
like implementing shell pipelines

27

pipe()
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
/* normal case: */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];

then from one process…
write(write_fd, ...);

and from another
read(read_fd, ...);

28

pipe() and blocking
BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?

29

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

30

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

30

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

30

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

30

pipe and pipelines
ls -1 | grep foo

pipe(pipe_fd);
ls_pid = fork();
if (ls_pid == 0) {

dup2(pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"ls", "-1", NULL};
execv("/bin/ls", argv);

}
grep_pid = fork();
if (grep_pid == 0) {

dup2(pipe_fd[0], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

}
close(pipe_fd[0]); close(pipe_fd[1]);
/* wait for processes, etc. */

31

example execution
parent

pipe() — fds 3 [read], 4 [write]

child 1

4→ stdout

close 3,4

exec ls

child 2

3→ stdin

close 3,4

exec grep
close 3,4

32

exercise
pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */
close(pipe_fds[0]);
char c = 'A';
write(pipe_fds[1], &c, 1);
exit(0);

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read %d bytes\n", count);

}

The child is trying to send the character A to the parent, but it has a
(subtle) bug.
But the above code outputs read 0 bytes instead of read 1
bytes.
What happened?

33

exercise solution
pipe() is after fork — two pipes, one in child, one in parent

34

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C

35

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C

36

empirical evidence
8 0

374 01
210 012
30 0123
12 01234
3 012345
1 0123456
2 01234567
1 012345678

359 0123456789

38

partial reads
read returning 0 always means end-of-file

by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

39

Unix API summary
spawn and wait for program: fork (copy), then

in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close
one interface for regular files, pipes, network, devices, …

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection/pipelines
open() or pipe() to create new file descriptors
dup2 in child to assign file descriptor to index 0, 1

40

backup slides

41

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

42

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

42

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

42

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

42

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

42

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

42

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

43

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

43

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

43

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

43

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

43

read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

44

mixing stdio/iostream and raw read/write
don’t do it (unless you’re very careful)

cin/scanf read some extra characters into a buffer?
you call read — they disappear!

cout/printf has output waiting in a buffer?
you call write — out-of-order output!

(if you need to: some stdio calls specify that they clear out buffers)

45

	files
	interlude: file descriptors
	close
	Shell: redirection
	dup2: redirection mechanism
	open/close/dup/fork and fd array
	read, write
	exercise (read/write/dup2)

	pipelines
	pipe
	pipe and pipelines
	exercise (1)

	pipe exercise
	POSIX api summary
	backup slides
	kernel buffering

	stdio.h versus system calls

