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Changelog
16 Feb 2021 (after lecture): write “runnable to not runnable” when
defining turnaround time
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last time
file descriptors as pointers to file

pointers copied on fork
close: set pointer to NULL
dup2(X, Y): make Y point to same file as X

read/write system calls
read/write up to amount requested
read: wait for some data to be available
write: wait for completion/failure
returns amount written/read, or -1 on failure
read = 0 means end-of-file

pipes and pipelines
pipe library: pair of connected file descriptors
OS managed buffer to store written, unread data
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on the quiz generally
swtch questions were a lot less clear than I’d like

wasn’t careful about eliminating issues
that would arise from other code using swtch() on first/second

should’ve used struct context pointer, not struct context
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on the quiz and swtch
foo() {

...
swtch(&x, y);
...

}

question: if bar() running, where are registers saved?

if registers saved by calling swtch: should be on foo()’s stack
also where compiler would save local vars that didn’t fit in registers

if registers saved by exception interrupted ... code
in trapframe, allocated on kernel stack
if foo() in kernel, the same stack foo() used
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xv6: process table
struct {
struct spinlock lock;
struct proc proc[NPROC]

} ptable;

fixed size array of all processes

lock to keep more than one thing from accessing it at once
rule: don’t change a process’s state (RUNNING, etc.) without
‘acquiring’ lock
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xv6: allocating a struct proc
acquire(&ptable.lock);

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p−>state == UNUSED)

goto found;

release(&ptable.lock);

just search for PCB with “UNUSED” state

not found? fork fails

if found — allocate memory, etc.
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xv6: creating the first process
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];

p = allocproc();

initproc = p;
...
inituvm(p−>pgdir, _binary_initcode_start,

(int)_binary_initcode_size);
...
p−>tf−>esp = PGSIZE;
p−>tf−>eip = 0; // beginning of initcode.S
...
p−>state = RUNNABLE;

struct proc with initial kernel stack
setup to return from swtch, then from exception

load into user memory
hard-coded “initial program”
calls execv() of /init

modify user registers
to start at address 0

set initial stack pointerset process as runnable
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threads versus processes
for now — each process has one thread

Anderson-Dahlin talks about thread scheduling

thread = part that gets run on CPU
saved register values (including own stack pointer)
save program counter

rest of process
address space (accessible memory)
open files
current working directory
…
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xv6 processes versus threads
xv6: one thread per process

so part of the process control block
is really a thread control block
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};
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single and multithread processes

thread thread thread thread

files pid …

code data …

stack

registers

PC

…

single-threaded process

files pid …

code data …

stack stack stack

registers registers registers

PC PC PC

… … …

multi-threaded process
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thread states
new

(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

being created, but not ready
could be put on CPU actually on CPU

need external event to happen

done except for being waited for
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alternative view: queues
ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues

queues of threadsready queue or run queue
list of running processes

question: what to take off queue first when CPU is free?
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on queues in xv6
xv6 doesn’t represent queues explicitly

no queue class/struct

ready queue: process list ignoring non-RUNNABLE entries

I/O queues: process list where SLEEPING, chan = I/O device

real OSs: typically separate list of processes
maybe sorted?
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scheduling
scheduling = removing process/thread to remove from queue

mostly for the ready queue (pre-CPU)
remove a process and start running it
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example other scheduling problems
batch job scheduling

e.g. what to run on my supercomputer?

jobs that run for a long time (tens of seconds to days)

can’t easily ‘context switch’ (save job to disk??)

I/O scheduling

what order to read/write things to/from network, hard disk, etc.
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this lecture
main target: CPU scheduling

…on a system where programs do a lot of I/O

…and other programs use the CPU when they do

…with only a single CPU

many ideas port to other scheduling problems
especially simpler/less specialized policies
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scheduling policy
scheduling policy = what to remove from queue
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xv6 scheduler: outline
separate thread per core (with no associated process)

runs infinite loop:
choose thread to switch to
switch to that thread
(and get switched back to)

program threads:
do program stuff until the OS decides to stop
then switch to current core’s schedule thread
(and get swithced back to, repeat)
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the xv6 scheduler (1)
void scheduler(void) {
struct proc *p;
struct cpu *c = mycpu();
c−>proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)
continue;

... /* setup for process switch */
swtch(&(c−>scheduler), p−>context); /* ... */
... /* cleanup for process switch */

}
release(&ptable.lock);

}
}

infinite loop
every iteration: switch to a thread
thread will switch back to us

enable interrupts (sti is the x86 instruction)
makes sure keypresses, etc. will be handled

…(but acquiring the process table lock disables interrupts again)

make sure we’re the only one accessing the list of processes
disables interrupts

e.g. don’t want timer interrupt to switch while already switching

iterate through all runnable processes
in the order they’re stored in a table

switch to whatever runnable process we find
when it’s done (e.g. timer interrupt)
it switches back, then next loop iteration happens
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the xv6 scheduler: the actual switch
/* in scheduler(): */

// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c−>proc = 0;

prepare: change address space, change process stateswitch to kernel thread of process
that thread responsible for going back to user mode

after we’ve run the process until it’s done, we end up here

…so, change address space back away from user process

track what process is being run
so we can look it up in interrupt handler
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switching to/from scheduler
(1) acquire process table lock

prevent someone else from switching to scheduler at same time
…causing confusion about what’s running/runnable
(someone else = timer interrupt, another core, …)

(2) mark current process as not running

(3) actually switch to scheduler thread
scheduler thread runs, possibly switches to other threads, etc.

(4) scheduler thread switches back
invariant: process table lock held
invariant: current thread marked running

(5) release process table lock
21
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the xv6 scheduler: on process start

void forkret() {
/* scheduler switches to here after new process starts */
...
release(&ptable.lock);
...

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

scheduler switched with process table locked
need to unlock before running user code
(allow timer interrupts, etc.)
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the xv6 scheduler: yield (timer int.)

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

process table was ‘locked’
unlock it before running user code
otherwise: timer interrupt/etc. won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler
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24



the xv6 scheduler: yield (timer int.)

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

process table was ‘locked’
unlock it before running user code
otherwise: timer interrupt/etc. won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: yield (timer int.)

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

process table was ‘locked’
unlock it before running user code
otherwise: timer interrupt/etc. won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



the xv6 scheduler: yield (timer int.)

/* function to invoke scheduler;
used by the timer interrupt or yield() syscall */

void yield() {
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched(); // switches to scheduler thread
release(&ptable.lock);

}

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

process table was ‘locked’
unlock it before running user code
otherwise: timer interrupt/etc. won’t work

yield: function to call scheduler
called by timer interrupt handler

make sure we’re the only one accessing the process list
before changing our process’s state / entering scheduler

set us as RUNNABLE (was RUNNING)
then switch to infinite loop in scheduler

24



switching to/from scheduler
(1) acquire process table lock

prevent someone else from switching to scheduler at same time
…causing confusion about what’s running/runnable
(someone else = timer interrupt, another core, …)

(2) mark current process as not running

(3) actually switch to scheduler thread
scheduler thread runs, possibly switches to other threads, etc.

(4) scheduler thread switches back
invariant: process table lock held
invariant: current thread marked running

(5) release process table lock
25
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the xv6 scheduler: entering/leaving for sleep

void sleep(void *chan, ...) { ...
acquire(&ptable.lock);
...
p−>chan = chan;
p−>state = SLEEPING;

sched();

...
release(&ptable.lock);

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

for (...) { // iterate over RUNNABLE
...
p−>state = RUNNING;
swtch(&(c−>scheduler), p−>context);
...

}

scheduler()

get exclusive access to process table
before changing our state to sleeping
and before running scheduler loop

set us as SLEEPING (was RUNNING)
use “chan” to remember why
(so others process can wake us up)

…and switch to the scheduler infinite loop
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the xv6 scheduler: SLEEPING to RUNNABLE

static void
wakeup1(void *chan)
{
struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p−>state == SLEEPING && p−>chan == chan)

p−>state = RUNNABLE;
}

new
(xv6: EMBRYO)

ready
(xv6: RUNNABLE)

running
(xv6: RUNNING)

waiting
(xv6: SLEEPING)

finished
(xv6: ZOMBIE)

design choice:
wakeup just sets as runnable
actual switch always happens later
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xv6 scheduler odd choices
separate scheduler thread

pro: keep scheduler state (last process p) on the stack
con: slower — more thread switches

scan process list to find sleeping/waiting threads
alternative: separate list of waiting threads
(…definitely faster if lots of non-runnable threads)

process state tracking code tightly integrated with policy
alternative: utility function to manage process states, current process
value, etc.
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the scheduling policy problem
what RUNNABLE program should we run?

xv6 answer: whatever’s next in list

best answer?
well, what should we care about?
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some simplifying assumptions
welcome to 1970:

one program per user

one thread per program

programs are independent
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recall: scheduling queues
ready queue CPU

I/O I/O queues I/O system call

timer/etc. interrupt

wait/… system callwait queues
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CPU and I/O bursts
…

compute
start read
(from file/keyboard/…)

wait for I/O

compute on read data
start read
wait for I/O

compute on read data
start write
wait for I/O

…

program alternates between computing
and waiting for I/O

examples:
shell: wait for keypresses
drawing program: wait for mouse presses/etc.
web browser: wait for remote web server
…
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CPU bursts and interactivity (one c. 1966 shared system)

shows compute time
from command entered
until next command prompt

from G. E. Bryan, “JOSS: 20,000 hours at a console—a statistical approach” in Proc. AFIPS 1967 FJCC 34



CPU bursts and interactivity (one c. 1990 desktop)

shows CPU time
from RUNNING
until not RUNNABLE
anymore

from Curran and Stumm, “A Comparison of basic CPU Scheduling Algoirithms for Multiprocessor Unix” 35



CPU bursts
observation: applications alternate between I/O and CPU

especially interactive applications
but also, e.g., reading and writing from disk

typically short “CPU bursts” (milliseconds) followed by short “IO
bursts” (milliseconds)
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scheduling CPU bursts
our typical view: ready queue, bunch of CPU bursts to run

to start: just look at running what’s currently in ready queue best
same problem as ‘run bunch of programs to completion’?

later: account for I/O after CPU burst
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an historical note
historically applications were less likely to keep all data in memory

historically computers shared between more users

meant more applications alternating I/O and CPU

context many scheduling policies were developed in
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scheduling metrics
turnaround time (Arpaci-Dusseau) AKA response time
(Anderson-Dahlin)(want low)

(what Arpaci-Dusseau calls response time is related, but slightly
different)
what user sees: from keypress to character on screen
(submission until job finished — runnable to not runnable)

throughput (want high)
total work per second
problem: overhead (e.g. from context switching)

fairness
many definitions
all conflict with best average throughput/turnaround time
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turnaround time and I/O
scheduling CPU bursts? (what we’ll mostly deal with)

turnaround time ≈ time to start next I/O
turnaround time = time from runnable to not runnable again
important for fully utilizing I/O devices
closed loop: faster turnaround time → program requests CPU sooner

scheduling batch program on cluster?
turnaround time ≈ how long does user wait
once program done with CPU, it’s probably done
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throughput

run A
(3 units)

context switch
(each .5 units)

run B
(3 units)

run A
(2 units)

throughput: useful work done per unit time

non-context switch CPU utilization = 3 + 3 + 2
3 + .5 + 3 + .5 + 2

= 88%

also other considerations:
time lost due to cold caches
time lost not starting I/O early as possible
…
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fairness
timeline 1 run A run B

timeline 2run A run B run A run B run A run B run A run B

assumption: one program per user

two timelines above; which is fairer?

easy to answer — but formal definition?
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metrics example/exercise (1)which schedule is better for:
throughput?
mean turnaround time?
fairness? responsiveness?

program A: (use CPU) (wait for
network)

program B:

program C:

1
CPU:

I/O:
B A C

A not ready
A

2
CPU:

I/O:
A B C A C

A not ready
A

3
CPU:

I/O:
A C A C

A not ready
B C A C
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backup slides
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kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3
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kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk
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read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed
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mixing stdio/iostream and raw read/write
don’t do it (unless you’re very careful)

cin/scanf read some extra characters into a buffer?
you call read — they disappear!

cout/printf has output waiting in a buffer?
you call write — out-of-order output!

(if you need to: some stdio calls specify that they clear out buffers)
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turnaround and wait time
wait for input ready running

turnaround time (Anderson-Dahlin “response time”)

+
wait time

(= turnaround time - running time)
Arpaci-Dusseau’s “response time”

common measure: mean turnaround time or total turnaround time

same as optimizing mean/total waiting time
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