
scheduling 2

1



last time
xv6 scheduler design

global array of processes (process table)
seperate scheduler thread (per core) for convenience)
lock to control changes to process table
implicit queues (search process table for state)

CPU and I/O bursts

scheduling policy = what to remove from queues

scheduling metrics
throughput — useful work per unit time
turnaround time — time from when becomes runnable to finishes running
fairness
…?

2



metrics example/exercise (2)
program A: (wait for

keypress)
(wait for
network)

program B: (wait for
disk)

program C:

which schedule is better for:
throughput?
mean turnaround time?
fairness? responsiveness?

1
CPU:

I/O: A not ready
B

B not ready

C B A C
A not ready

A

2
CPU:

I/O: A not ready
B

B not ready

C A C B
A not ready

A

3



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

4



scheduling example assumptions
multiple programs become ready at almost the same time

alternately: became ready while previous program was running

…but in some order that we’ll use
e.g. our ready queue looks like a linked list

5



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

6



first-come, first-served
simplest(?) scheduling algorithm

no preemption — run program until it can’t
suitable in cases where no context switch
e.g. not enough memory for two active programs

7



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

8



FCFS orders
arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 3 (B), 7 (C)

“convoy effect”

9



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

10



round-robin
simplest(?) preemptive scheduling algorithm

run program until either
it can’t run anymore, or
it runs for too long (exceeds “time quantum”)

requires good way of interrupting programs
like xv6’s timer interrupt

requires good way of stopping programs whenever
like xv6’s context switches

11



round robin (RR) (varying order)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

turnaround times: (mean=16.3)
31 (A), 10 (B), 8 (C)

12



round robin (RR) (varying order)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

turnaround times: (mean=16.3)
31 (A), 10 (B), 8 (C)

12



round robin (RR) (varying time quantum)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

turnaround times: (mean=17.3)
31 (A), 10 (B), 11 (C)

13



round robin (RR) (varying time quantum)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

turnaround times: (mean=17.3)
31 (A), 10 (B), 11 (C)

13



round robin idea
choose fixed time quantum Q

unanswered question: what to choose

switch to next process in ready queue after time quantum expires

this policy is what xv6 scheduler does
scheduler runs from timer interrupt (or if process not runnable)
finds next runnable process in process table

14



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput

FCFS = RR with infinite quantum
more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround time?

15



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround time?

15



aside: context switch overhead
typical context switch: ∼ 0.01 ms to 0.1 ms

but tricky: lot of indirect cost (cache misses)
(above numbers try to include likely indirect costs)

choose time quantum to manage this overhead

current Linux default: between ∼0.75 ms and ∼6 ms
varied based on number of active programs
Linux’s scheduler is more complicated than RR

historically common: 1 ms to 100 ms
1% to 0.1% ovherhead?

16



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround time?
17



exercise: round robin quantum
if there were no context switch overhead, decreasing the time
quantum (for round robin) would cause mean turnaround time to

.

A. always decrease or stay the same

B. always increase or stay the same

C. increase or decrease or stay the same

D. something else?

18



increase mean turnaround time
A: 1 unit CPU burst
B: 1 unit

Q = 1

Q = 1/2

A B
mean turnaround time =
(1 + 2) ÷ 2 = 1.5

mean turnaround time =
(1.5 + 2) ÷ 2 = 1.75

19



decrease mean turnaround time
A: 10 unit CPU burst
B: 1 unit

Q = 10

Q = 5

A B
mean turnaround time =
(10 + 11) ÷ 2 = 10.5

mean turnaround time =
(6 + 11) ÷ 2 = 8.5

20



stay the same
A: 1 unit CPU burst
B: 1 unit

Q = 10

Q = 1

A B

21



FCFS and order
earlier we saw that with FCFS, arrival order mattered

big changes in turnaround/waiting time

let’s use that insight to see how to optimize mean/total turnaround
times

22



FCFS ordersarrival order: A, B, C
A B C

0 10 20 30
waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: C, B, A
C B A

0 10 20 30
waiting times: (mean=3.3)
7 (A), 3 (B), 0 (C)
turnaround times: (mean=13.7)
31 (A), 7 (B), 3 (C)

arrival order: B, C, A
B C A

0 10 20 30
waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

23



order and turnaround time
best total/mean turnaround time = run shortest CPU burst first

worst total/mean turnaround time = run longest CPU burst first

intuition (1): “race to go to sleep”

intuition (2): minimize time with two threads waiting

later: we’ll use this result to make a scheduler that minimizes mean
turnaround time

24



order and turnaround time
best total/mean turnaround time = run shortest CPU burst first

worst total/mean turnaround time = run longest CPU burst first

intuition (1): “race to go to sleep”

intuition (2): minimize time with two threads waiting

later: we’ll use this result to make a scheduler that minimizes mean
turnaround time

24



diversion: some users are more equal
shells more important than big computation?

i.e. programs with short CPU bursts

faculty more important than students?

scheduling algorithm: schedule shells/faculty programs first

25



priority scheduling
priority 15
…
priority 3
priority 2
priority 1
priority 0

ready queues for each priority level

process A process B

process C
process D process E process F

choose process from ready queue for highest priority
within each priority, use some other scheduling (e.g. round-robin)

could have each process have unique priority

26



priority scheduling and preemption
priority scheduling can be preemptive

i.e. higher priority program comes along — stop whatever else was
running

27



exercise: priority scheduling (1)
Suppose there are two processes:

thread A
highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take thread Z complete?

28



exercise: priority scheduling (2)
Suppose there are three processes:
thread A

highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread B
second-highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take thread Z complete?
29



starvation
programs can get “starved” of resources

never get those resources because of higher priority

big reason to have a ‘fairness’ metric

something almost all definitions of fairness agree on

30



fair scheduling
what is the fairest scheduling we can do?

intuition: every thread has an equal chance to be chosen

31



random scheduling algorithm
“fair” scheduling algorithm: choose uniformly at random

good for “fairness”

bad for response time

bad for predictability

32



proportional share
maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

33



proportional share
maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

33



lottery scheduling

A
100 tickets

B
200 tickets

C
100 tickets

every thread has a certain number of lottery tickets:

scheduling = lottery among ready threads:

0 100 200 300 400
choose random number in this range to find winner

34



simulating priority with lottery
A (high priority)

1M tickets
B (medium priority)

1K tickets
C (low priority)

1 tickets

very close to strict priority

35



lottery scheduling assignment
assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how often processes scheduled (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

36



lottery scheduling assignment
assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how often processes scheduled (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

36



is lottery scheduling actually good?
seriously proposed by academics in 1994 (Waldspurger and Weihl,
OSDI’94)

including ways of making it efficient
making preemption decisions (other than time slice ending)
if processes don’t use full time slice
handling non-CPU-like resources
…

elegant mecahnism that can implement a variety of policies

but there are some problems…

37



exercise
thread A: 1 ticket, always runnable

thread B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

38



exercise
thread A: 1 ticket, always runnable

thread B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

38



A runs w/in 10 times…

39



minimizing turnaround time
recall: first-come, first-served best order:
had shortest CPU bursts first

→ scheduling algorithm: ‘shortest job first’ (SJF)

= same as priority where CPU burst length determines priority

…but without preemption for now
priority = job length doesn’t quite work with preemption
(preview: need priority = remaining time)

40



a practical problem
so we want to run the shortest CPU burst first

how do I tell which thread that is?

we’ll deal with this problem later

…kinda

41



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

42



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

42



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

42


	exercise (2)
	FCFS and RR
	FCFS and examples with orders
	RR and examples with orders
	FCFS and round-robin continuum
	aside: real context switch overhead
	context switch overhead
	exercise: RR and turnaround times
	FCFS response time tradeoff

	priority
	exercise
	starvation

	fairness goals: proportional share
	intuitive fairness
	proportional share
	lottery scheduling
	SJF


