
1



Changelog
25 Feb 2021 (after lecture): add some explanation slides to CFS
exercises

1



last time
first-come, first-served

run whatever became ready first until done

round-robin
choose time quantum
run for time quantum amount of time
switch to next in list

time quantum tradeoffs
shorter time quantum = lower throughput + better fairness

priority scheduling
proportional share/lottery scheduling

weighted random choice

shortest first — minimize mean turnaround time
avoid convoy effect — short jobs waiting behind long

2



minimizing turnaround time
recall: first-come, first-served best order:
had shortest CPU bursts first

→ scheduling algorithm: ‘shortest job first’ (SJF)

= same as priority where CPU burst length determines priority

…but without preemption for now
priority = job length doesn’t quite work with preemption
(preview: need priority = remaining time)

3



a practical problem
so we want to run the shortest CPU burst first

how do I tell which thread that is?

we’ll deal with this problem later

…kinda

4



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

5



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

5



alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”

5



preemption: definition
stopping a running program while it’s still runnable

example: FCFS did not do preemption. RR did.

what we need to solve the problem:
‘accidentally’ ran long task, now need room for short one

6



adding preemption (1)
what if a long job is running, then a short job interrupts it?

short job will wait for too long

solution is preemption — reschedule when new job arrives
new job is shorter — run now!

7



adding preemption (2)
what if a long job is almost done running, then a medium job
interrupts it?

recall: priority = job length
long job waits for medium job
…for longer than it would take to finish
worse than letting long job finish

solution: priority = remaining time

called shortest remaining time first (SRTF)
prioritize by what’s left, not the total

8



adding preemption (2)
what if a long job is almost done running, then a medium job
interrupts it?

recall: priority = job length
long job waits for medium job
…for longer than it would take to finish
worse than letting long job finish

solution: priority = remaining time

called shortest remaining time first (SRTF)
prioritize by what’s left, not the total

8



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

9



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

9



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

9



alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C

9



SRTF, SJF are optimal (for turnaround time)
SJF minimizes turnaround time/waiting time
…if you disallow preemption/leaving CPU deliberately idle

SRTF minimizes turnaround time/waiting time
…if you ignore context switch costs

10



aside on names
we’ll use:

SRTF for preemptive algorithm with remaining time

SJF for non-preemptive with total time=remaining time

might see different naming elsewhere/in books, sorry…

11



knowing job (CPU burst) lengths
seems hard

sometimes you can ask
common in batch job scheduling systems

and maybe you’ll get accurate answers, even

12



the SRTF problem
want to know CPU burst length
well, how does one figure that out?

e.g. not any of these fields
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

13



the SRTF problem
want to know CPU burst length
well, how does one figure that out?
e.g. not any of these fields

uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

13



predicting the future
worst case: need to run the program to figure it out

but heuristics can figure it out
(read: often works, but no gaurentee)

key observation: CPU bursts now are like CPU bursts later
intuition: interactive program with lots of I/O tends to stay interactive
intuition: CPU-heavy program is going to keep using CPU

14



multi-level feedback queues
classic strategy based on priority scheduling

combines update time estimates and running shorter times first

key idea: current priority ≈ current time estimate

small(ish) number of time estimate “buckets”

15



multi-level feedback queues: setup
priority 3
0–1 ms quantum
priority 2
1–10 ms quantum
priority 1
10–20 ms quantum
priority 0
20+ ms quantum

thread A thread B

thread C

thread D thread E thread F

goal: place processes at priority level based on CPU burst time
just a few priority levels — can’t guess CPU burst precisely anyways

dynamically adjust priorities based on observed CPU burst times
priority level → allowed/expected time quantum

use more than 1ms at priority 3? — you shouldn’t be there
use less than 1ms at priority 0? — you shouldn’t be there

16



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

17



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

17



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

17



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A

17



multi-level feedback queue idea
higher priority = shorter time quantum (before interrupted)

adjust priority and timeslice based on last timeslice

intuition: thread always uses same CPU burst length?
ends up at “right” priority

rises up to queue with quantum just shorter than it’s burst
then goes down to next queue, then back up, then down, then up, etc.

18



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum oscillation: too big for prio 2 / too small for prio 3

19



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum oscillation: too big for prio 2 / too small for prio 3

19



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum oscillation: too big for prio 2 / too small for prio 3

19



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum

oscillation: too big for prio 2 / too small for prio 3

19



MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum

oscillation: too big for prio 2 / too small for prio 3

19



cheating multi-level feedback queuing
algorithm: don’t use entire time quantum? priority increases

getting all the CPU:
while (true) {
useCpuForALittleLessThanMinimumTimeQuantum();
yieldCpu();

}

20



multi-level feedback queuing and fairness
suppose we are running several programs:

A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

21



multi-level feedback queuing and fairness
suppose we are running several programs:

A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts

21



conflicting goals for interactivity heuristics
efficiency

avoid scanning all threads every few milliseconds

figure out new programs quickly

adapt to changes/spikes in program behavior

avoid pathological behavior
starvation, hanging when new compute-intensive program starts, etc.

exercise: how to handle each of these well?
what does MLFQ do well?

22



Linux’s Completely Fair Scheduler (CFS)
Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

23



Linux’s Completely Fair Scheduler (CFS)
Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

24



CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

25



CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

25



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

26



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

26



virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

26



what about threads waiting for I/O, …?
should be advantage for processes not using the CPU as much

haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

27



what about threads waiting for I/O, …?
should be advantage for processes not using the CPU as much

haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

27



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

28



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

28



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

28



A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms

28



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

29



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

29



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

29



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

29



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

29



handling proportional sharing
solution: multiply used time by weight

e.g. 1 ms of CPU time costs process 2 ms of virtual time

higher weight =⇒ process less favored to run

30



CFS exercise (0)
A: CPU:

∼4 ms
wait for I/O:

∼2 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

suppose programs A, B with alternating CPU + I/O as above

with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get?

31



exercise solution
if A, B, were running alone, could get at most 1/2 the CPU

B can’t use that much time

so B will run 2/5ths of the time (the most it can)

so B will almost always have lower virtual time than A

A will get the remaining about 3/5ths

exception: time both A and B are both doing I/O

32



CFS exercise (1)
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

C: …(uses CPU forever) …

suppose programs A, B, C with alternating CPU + I/O as above

with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion of
CPU does program A get?

33



CFS exercise: maximum time for A
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

A running alone: A runs 2/5ths of the time
A, B, C sharing fairly: each runs 1/3rd of the time

if A used more than 1/3rd of the time…
then it would have a higher virtual time…
and B and C would catch up
(and same for B or C)

result: A runs at most 1/3rd of the time…
unless B can’t use its full share because of I/O

(because of being interrupted by A too much?)
34



CFS exercise (2)
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

C: …(uses CPU forever) …

suppose we add adjustments to virtual time for waking up from
sleep

expected direction of change in how much compute time A gets?

35



CFS exercise: A disadvantage from sleep
A

A(not ready): 10.0 ms
B: 10.0 ms
C: 11.0 ms

B

A(not ready): 10.0 ms
B(not ready): 11.0 ms
C: 11.0 ms

C

A(not ready): 10.0 ms
B: 11.0 ms
C: 12.5 ms

B

A(not ready): 10.0 ms 10.5 ms
B: 11.5 ms
C: 12.5 ms

A

if scheduler configured to limit advantage
of newly ready threads enough:
A might ‘lose’ some virtual time

because it waits for I/O “too long”
and since A waits for I/O longer

probably loses more time than C this way
36



CFS exercise: A interrupted by B?
A alone: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

A with B?: A B
∼1 ms A B

∼1 ms A wait for I/O:
∼3 ms

A interrupted by B a bunch sometimes…?

might not start I/O as often

might not be able to run 1/3rd of the time

e.g. sometimes 2/(2 + 2 + 3) ≈ 28% of CPU

37



which scheduler should I choose?
I care about…
CPU throughput: first-come first-serve

average response time: SRTF approximation

I/O throughput: SRTF approximation

fairness — medium-term CPU usage: something like Linux CFS

fairness — wait time: something like RR

real-world deadlines: earliest deadline first or similar

favoring certain users: strict priority

38



which scheduler should I choose?
I care about…
CPU throughput: first-come first-serve

average response time: SRTF approximation

I/O throughput: SRTF approximation

fairness — medium-term CPU usage: something like Linux CFS

fairness — wait time: something like RR

real-world deadlines: earliest deadline first or similar

favoring certain users: strict priority

38



a note on multiprocessors
what about multicore?

extra considerations:

want two processors to schedule without waiting for each other

want to keep process on same processor (better for cache)

what process to preempt when three+ choices?

39



4.4BSD scheduler
4.4BSD / FreeBSD pre-2003 scheduler was a variation on MLFQ

64 priority levels, 100 ms quantum

same quantum at every priority

priorities adjusted periodically
in retrospect not good for performance — iterate through all threads
part of why FreeBSD stopped using this scheduler

priority of threads that spent a lot of time waiting for I/O increased

priority of threads that used a lot of CPU time decreased

40



real-time
so far: “best effort” scheduling

best possible (by some metrics) given some work

alternate model: need gaurnetees

deadlines imposed by real-world
process audio with 1ms delay
computer-controlled cutting machines (stop motor at right time)
car brake+engine control computer
…

41



real time example: CPU + deadlines

CPU needed

ready deadline

CPU needed

ready deadline

CPU needed

ready deadline

42



example with RR
ready deadline

ready deadline

ready deadline

missed deadline!

43



earliest deadline first
ready deadline

ready deadline

ready deadline

44



impossible deadlines
ready deadline

ready deadline

ready deadline

no way to meet all deadlines!

45



admission control
given worst-case runtimes, start times, deadlines, scheduling
algorithm,…

figure out whether it’s possible to gaurentee meeting deadlines
details on how — not this course (probably)

if not, then
change something so they can?
don’t ship that device?
tell someone at least?

46



earliest deadline first and…
earliest deadline first does not (even when deadlines met)

minimize response time
maximize throughput
maximize fairness

exercise: give an example

47



other real-time schedulers
typical real time systems: periodic tasks with deadlines

“rate monotonic”

commonly approximate EDF with lower period = higher priority
easier to implement than true EDF

well-known method to determine if schedule is admissible
= won’t exceed deadline (under some assumptions)

48



MLFQ variations
version of MLFQ I described is in Anderson-Dahlin

problems:

starvation
worse than with real SRTF — based on guess, not real remaining time

oscillation not great for predictability

49



variation to prevent starvation
Apraci-Dusseau presents version of MLFQ w/o starvation

two changes:

don’t increase priority when whole quantum not used
instead keep the same — more stable

periodically increase priority of all threads
allow compute-heavy threads to run a little
still deals with thread’s behavior changing over time
replaces finer-grained upward adjustments

50



FreeBSD scheduler
current default FreeBSD scheduler based on MLFQ idea

…but: time quantums don’t depend on priority

computes interactivity score ∼ I/O wait
I/O wait + runtime

note: deliberately not estimating remaining time

(using “recent” history of thread)

thread priorities set based on interactivity score

51



aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

52



aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

52



aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

52



aside: measuring fairness (2)
one way: max-min fairness

choose schedule that maximizes the minimum resource given to
anyone

most fair least fair

53



aside: measuring fairness (2)
one way: max-min fairness

choose schedule that maximizes the minimum resource given to
anyone

most fair least fair

53



CFS quantum lengths goals
first priority: constrain minimum quantum length (default: 0.75ms)

avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

54



CFS quantum lengths goals
first priority: constrain minimum quantum length (default: 0.75ms)

avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

54



CFS: avoiding excessive context switching
conflicting goals:

schedule newly ready tasks immediately
(assuming less virtual time than current task)

avoid excessive context switches

CFS rule:
if virtual time of new task < current virtual time by threshold

default threshold: 1 ms

(otherwise, wait until quantum is done)

55


	SJF
	SRTF
	getting time estimates?
	multilevel feedback queues (MLFQ)
	introduction
	example
	cheating
	unfairness
	heuristic balancing act?

	Linux's completely fair scheduler (CFS)
	handling I/O wait
	example: finishing early?
	example: long sleep
	making proportional
	CFS exercise
	CFS exercise

	which scheduler should I use?
	a note on multiple processors
	4.4BSD scheduler

	real-time scheduling
	variations

	measuring fairness
	adjusting time quantums


