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thinking about race conditions (1)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 y ← 2
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thinking about race conditions (2)
what are some possible values of x?

(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2
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thinking about race conditions (3)
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atomic operation
atomic operation = operation that runs to completion or not at all

we will use these to let threads work together

most machines: loading/storing (aligned) words is atomic
so can’t get 3 from x← 1 and x← 2 running in parallel
aligned ≈ address of word is multiple of word size (typically done by
compilers)

but some instructions are not atomic; examples:
x86: integer add constant to memory location
many CPUs: loading/storing values that cross cache blocks

e.g. if cache blocks 0x40 bytes, load/store 4 byte from addr. 0x3E is not atomic

6



lost adds (program)
.global update_loop
update_loop:

addl $1, the_value // the_value (global variable) += 1
dec %rdi // argument 1 -= 1
jg update_loop // if argument 1 >= 0 repeat
ret

int the_value;
extern void *update_loop(void *);
int main(void) {

the_value = 0;
pthread_t A, B;
pthread_create(&A, NULL, update_loop, (void*) 1000000);
pthread_create(&B, NULL, update_loop, (void*) 1000000);
pthread_join(A, NULL);
pthread_join(B, NULL);
// expected result: 1000000 + 1000000 = 2000000
printf("the_value = %d\n", the_value);

}
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lost adds (results)
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but how?
probably not possible on single core

exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)
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so, what is actually atomic
for now we’ll assume: load/stores of ‘words’

(64-bit machine = 64-bits words)

in general: processor designer will tell you

their job to design caches, etc. to work as documented
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too much milk
roommates Alice and Bob want to keep fridge stocked with milk:
time Alice Bob
3:00 look in fridge. no milk
3:05 leave for store
3:10 arrive at store look in fridge. no milk
3:15 buy milk leave for store
3:20 return home, put milk in fridge arrive at store
3:25 buy milk
3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?
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too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying
remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}
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too much milk “solution” 1 (timeline)
if (no milk) {

if (no note) {

Alice Bob

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

leave note;
buy milk;
remove note;

}
}
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too much milk “solution” 2 (algorithm)
intuition: leave note when buying or checking if need to buy
leave note;
if (no milk) {

if (no note) {
buy milk;

}
}
remove note;
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too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)
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“solution” 3: algorithm
intuition: label notes so Alice knows which is hers (and vice-versa)

computer equivalent: separate noteFromAlice and noteFromBob variables

leave note from Alice;
if (no milk) {

if (no note from Bob) {
buy milk

}
}
remove note from Alice;

Alice
leave note from Bob;
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob;

Bob
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too much milk: “solution” 3 (timeline)
leave note from Alice
if (no milk) {

Alice Bob

leave note from Bob
if (no note from Bob) {

buy milk
}

}
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob

remove note from Alice
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too much milk: is it possible
is there a solutions with writing/reading notes?

≈ loading/storing from shared memory

yes, but it’s not very elegant
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too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people
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Peterson’s algorithm
general version of solution

see, e.g., Wikipedia

we’ll use special hardware support instead
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some definitions
mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections
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the lock primitive
locks: an object with (at least) two operations:

acquire or lock — wait until lock is free, then “grab” it
release or unlock — let others use lock, wakeup waiters

typical usage: everyone acquires lock before using shared resource
forget to acquire lock? weird things happen

Lock(MilkLock);
if (no milk) {

buy milk
}
Unlock(MilkLock);
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pthread mutex
#include <pthread.h>

pthread_mutex_t MilkLock;
pthread_mutex_init(&MilkLock, NULL);
...
pthread_mutex_lock(&MilkLock);
if (no milk) {

buy milk
}
pthread_mutex_unlock(&MilkLock);

23



xv6 spinlocks
#include "spinlock.h"
...
struct spinlock MilkLock;
initlock(&MilkLock, "name for debugging");
...
acquire(&MilkLock);
if (no milk) {

buy milk
}
release(&MilkLock);
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example 2: parallel processing
compute minimum of 100M element array with 2 processors

algorithm:

compute minimum of 50M of the elements on each CPU
one thread for each CPU

wait for all computations to finish

take minimum of all the minimums
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barriers API
barrier.Initialize(NumberOfThreads)

barrier.Wait() — return after all threads have waited

idea: multiple threads perform computations in parallel

threads wait for all other threads to call Wait()
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barrier: waiting for finish

partial_mins[0] =
/* min of first

50M elems */;

barrier.Wait();

total_min = min(
partial_mins[0],
partial_mins[1]

);

Thread 0

barrier.Initialize(2);

partial_mins[1] =
/* min of last

50M elems */
barrier.Wait();

Thread 1
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barriers: reuse
barriers are reusable:

results[0][0] = getInitial(0);
barrier.Wait();

results[1][0] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][0] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 0
results[0][1] = getInitial(1);
barrier.Wait();

results[1][1] =
computeFrom(

results[0][0],
results[0][1]

);
barrier.Wait();

results[2][1] =
computeFrom(

results[1][0],
results[1][1]

);

Thread 1
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pthread barriers
pthread_barrier_t barrier;
pthread_barrier_init(

&barrier,
NULL /* attributes */,
numberOfThreads

);
...
...
pthread_barrier_wait(&barrier);
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C++ containers and locking
can you use a vector from multiple threads?

…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?

assuming it’s implemented like we expect…
but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?
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C++ standard rules for containers
multiple threads can read anything at the same time

can only read element if no other thread is modifying it

can safely add/remove elements if no other threads are accessing
container

(sometimes can safely add/remove in extra cases)

exception: vectors of bools — can’t safely read and write at same
time

might be implemented by putting multiple bools in one int
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implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts
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naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */
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naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);
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xv6 interrupt disabling (1)
...
acquire(struct spinlock *lk) {
pushcli(); // disable interrupts to avoid deadlock
... /* this part basically just for multicore */

}
release(struct spinlock *lk)
{
... /* this part basically just for multicore */
popcli();

}

35



xv6 push/popcli
pushcli / popcli — need to be in pairs

pushcli — disable interrupts if not already

popcli — enable interrupts if corresponding pushcli disabled them
don’t enable them if they were already disabled
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a simple race
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A
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a simple race: results
thread_A:

movl $1, x /* x ← 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y ← 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ???
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load/store reordering
load/stores atomic, but run out of order

recall?: out-of-order processors

processor optimization: execute instructions in non-program order
hide delays from slow caches, variable computation rates, etc.

track side-effects within a thread to make as if in-order
but common choice: don’t worry as much between cores/threads
design decision: if programmer cares, they worry about it
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why load/store reordering?
prior example: load of x executing before store of y

why do this? otherwise delay the load
if x and y unrelated — no benefit to waiting
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aside: some x86 reordering rules
each core sees its own loads/stores in order

(if a core stores something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores too early)

causality :
if a core reads X=a and (after reading X=a) writes Y=b,
then a core that reads Y=b cannot later read X=older value than a

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 41



how do you do anything with this?
difficult to reason about what modern CPU’s reordering rules do

typically: don’t depend on details, instead:

special instructions with stronger (and simpler) ordering rules
often same instructions that help with implementing locks in other ways

special instructions that restrict ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence
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compilers changes loads/stores too (1)
void Alice() {

note_from_alice = 1;
do {} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
cmpl $0, no_milk // if (no_milk != 0) ...
...
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compilers changes loads/stores too (2)
void Alice() {

note_from_alice = 1; // "Alice waiting" signal for Bob()
do {} while (note_from_bob);
if (no_milk) {++milk;}
note_from_alice = 2;

}

Alice:
// compiler optimization: don't set note_from_alice to 1,
// (why? it will be set to 2 anyway)
movl note_from_bob, %eax // eax ← note_from_bob

.L2:
testl %eax, %eax
jne .L2 // while (eax == 0) repeat
...
movl $2, note_from_alice // note_from_alice ← 2
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pthreads and reordering
many pthreads functions prevent reordering

everything before function call actually happens before

includes preventing some optimizations
e.g. keeping global variable in register for too long

pthread_mutex_lock/unlock, pthread_create, pthread_join, …
basically: if pthreads is waiting for/starting something, no weird ordering
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C++: preventing reordering
to help implementing things like pthread_mutex_lock

C++ 2011 standard: atomic header, std::atomic class

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing
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C++: preventing reordering example
#include <atomic>
void Alice() {

note_from_alice = 1;
do {

std::atomic_thread_fence(std::memory_order_seq_cst);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L2:
mfence // make sure store visible on/from other cores
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L2
cmpl $0, no_milk
...
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C++ atomics: no reordering
std::atomic<int> note_from_alice, note_from_bob;
void Alice() {

note_from_alice.store(1);
do {
} while (note_from_bob.load());
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...
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mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads
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GCC: built-in atomic functions
used to implement std::atomic, etc.

predate std::atomic

builtin functions starting with __sync and __atomic

these are what xv6 uses
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connecting CPUs and memory
multiple processors, common memory

how do processors communicate with memory?
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shared bus

CPU1 CPU2 CPU3 CPU4 MEM1 MEM2

tagged messages — everyone gets everything, filters

contention if multiple communicators
some hardware enforces only one at a time
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shared buses and scaling
shared buses perform poorly with “too many” CPUs

so, there are other designs

we’ll gloss over these for now

53



shared buses and caches
remember caches?

memory is pretty slow

each CPU wants to keep local copies of memory

what happens when multiple CPUs cache same memory?
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the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?
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“snooping” the bus
every processor already receives every read/write to memory

take advantage of this to update caches

idea: use messages to clean up “bad” cache entries
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cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block
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MSI state summary
Modified value may be different than memory and I am the

only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need to ask for it
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MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus

example: write while Shared
must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy
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MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)
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MSI: update memory
to write value (enter modified state), need to invalidate others

can avoid sending actual value (shorter message/faster)

“I am writing address X” versus “I am writing Y to address X”
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MSI: on cache replacement/writeback
still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)
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cache coherency exercise
modified/shared/invalid; all initially invalid; 32B blocks, 8B
read/writes

CPU 1: read 0x1000
CPU 2: read 0x1000
CPU 1: write 0x1000
CPU 1: read 0x2000
CPU 2: read 0x1000
CPU 2: write 0x2008
CPU 3: read 0x1008

Q1: final state of 0x1000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

Q2: final state of 0x2000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3: 63



MSI extensions
real cache coherency protocols sometimes more complex:

separate tracking modifications from whether other caches have
copy

send values directly between caches (maybe skip write to memory)

send messages only to cores which might care (no shared bus)
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modifying cache blocks in parallel
cache coherency works on cache blocks

but typical memory access — less than cache block
e.g. one 4-byte array element in 64-byte cache block

what if two processors modify different parts same cache block?
4-byte writes to 64-byte cache block

cache coherency — write instructions happen one at a time:
processor ‘locks’ 64-byte cache block, fetching latest version
processor updates 4 bytes of 64-byte cache block
later, processor might give up cache block
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modifying things in parallel (code)
void *sum_up(void *raw_dest) {

int *dest = (int *) raw_dest;
for (int i = 0; i < 64 * 1024 * 1024; ++i) {

*dest += data[i];
}

}

__attribute__((aligned(4096)))
int array[1024]; /* aligned = address is mult. of 4096 */

void sum_twice(int distance) {
pthread_t threads[2];
pthread_create(&threads[0], NULL, sum_up, &array[0]);
pthread_create(&threads[1], NULL, sum_up, &array[distance]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

}
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performance v. array element gap
(assuming sum_up compiled to not omit memory accesses)
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false sharing
synchronizing to access two independent things

two parts of same cache block

solution: separate them
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atomic read-modfiy-write
really hard to build locks for atomic load store

and normal load/stores aren’t even atomic…

…so processors provide read/modify/write operations

one instruction that
atomically
reads and modifies and writes back a value
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x86 atomic exchange
lock xchg (%ecx), %eax

atomic exchange

temp ← M[ECX]

M[ECX] ← EAX

EAX ← temp

…without being interrupted by other processors, etc.
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test-and-set: using atomic exchange
one instruction that…

writes a fixed new value

and reads the old value

write: mark a locked as TAKEN (no matter what)

read: see if it was already TAKEN (if so, only us)
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test-and-set: using atomic exchange
one instruction that…

writes a fixed new value

and reads the old value

write: mark a locked as TAKEN (no matter what)

read: see if it was already TAKEN (if so, only us)
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implementing atomic exchange
get cache block into Modified state

do read+modify+write operation while state doesn’t change

recall: Modified state = “I am the only one with a copy”
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x86-64 spinlock with xchg
lock variable in shared memory: the_lock

if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax ← 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction
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backup slides
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GCC: preventing reordering example (1)
void Alice() {

int one = 1;
__atomic_store(&note_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(&note_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...
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GCC: preventing reordering example (2)
void Alice() {

note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice ← 1

.L3:
mfence // make sure store is visible to other cores before loading

// on x86: not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
...
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xv6 spinlock: debugging stuff
void acquire(struct spinlock *lk) {
...
if(holding(lk))
panic("acquire")

...
// Record info about lock acquisition for debugging.
lk−>cpu = mycpu();
getcallerpcs(&lk, lk−>pcs);

}
void release(struct spinlock *lk) {
if(!holding(lk))
panic("release");

lk−>pcs[0] = 0;
lk−>cpu = 0;
...

}
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exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}
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solution
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xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)
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xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) : );

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)
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fetch-and-add with CAS (1)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true;

} else {
return false;

}
}

long my_fetch_and_add(long *pointer, long amount) { ... }

implementation sketch:
fetch value from pointer old
compute in temporary value result of addition new
try to change value at pointer from old to new
[compare-and-swap]
if not successful, repeat
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fetch-and-add with CAS (2)
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
} while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}
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exercise: append to singly-linked list
ListNode is a singly-linked list

assume: threads only append to list (no deletions, reordering)

use compare-and-swap(pointer, old, new):
atomically change *pointer from old to new
return true if successful
return false (and change nothing) if *pointer is not old

void append_to_list(ListNode *head, ListNode *new_last_node) {
...

}
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some common atomic operations (1)
// x86: emulate with exchange
test_and_set(address) {

old_value = memory[address];
memory[address] = 1;
return old_value != 0; // e.g. set ZF flag

}

// x86: xchg REGISTER, (ADDRESS)
exchange(register, address) {

temp = memory[address];
memory[address] = register;
register = temp;

}
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some common atomic operations (2)
// x86: mov OLD_VALUE, %eax; lock cmpxchg NEW_VALUE, (ADDRESS)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

// x86: lock xaddl REGISTER, (ADDRESS)
fetch−and−add(address, register) {

old_value = memory[address];
memory[address] += register;
register = old_value;

}
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common atomic operation pattern
try to do operation, …

detect if it failed

if so, repeat

atomic operation does “try and see if it failed” part
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