
1

Changelog
16 March 2021 (after lecture): correct solution to monitor ordering
example

1

last time (1)
load/store reordering by compiler, processor

default behavior: don’t worry about other cores/threads
threading library’s sync. constructs: directives + instructions to prevent
(so locks, pthread_join, etc. work as expected)

rules for accessing shared containers (C++)

false sharing
processor caches work in cache blocks
cores have to take turns modifying a cache block
lots of overhead if two cores working on same cache block

even if no race condition (different parts)

2

last time (2)
implementing waiting locks (mutexes) with spinlocks

spinlock protects list of waiting threads + “is mutex locked” boolean
lock: add self to waiting list (if already locked)
unlock: remove thread from waiting list (if any)
required lock integration with scheduler

monitors = mutexes + condition variables + shared state

condition variable = list of waiting threads, with operations:
Wait(CV, lock): add self to list, start waiting (unlocking lock while
waiting)
Broadcast(CV): wake up all waiting threads
Signal(CV): wake up one waiting thread

3

monitors/condition variables
locks for mutual exclusion

condition variables for waiting for event
operations: wait (for event); signal/broadcast (that event happened)

related data structures

monitor = lock + 0 or more condition variables + shared data
Java: every object is a monitor (has instance variables, built-in lock,
cond. var)
pthreads: build your own: provides you locks + condition variables

4

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

5

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

5

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

5

monitor idea

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor

lock must be acquired
before accessing
any part of monitor’s stuff

threads waiting for lock

threads waiting for
condition to be true
about shared data

5

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

6

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

6

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock
any one thread removed from cv queue
to start waiting for lock

6

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waiting

all threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

6

condvar operations

lock
shared data
condvar 1
condvar 2…
operation1(…)
operation2(…)

a monitor
threads waiting for lock

threads waiting for
condition to be true
about shared data

condvar operations:
Wait(cv, lock) — unlock lock, add current thread to cv queue
…and reacquire lock before returning
Broadcast(cv) — remove all from condvar queue
Signal(cv) — remove one from condvar queue

unlock lock — allow thread from queue to go

calling thread starts waitingall threads removed from cv queue
to start waiting for lock

any one thread removed from cv queue
to start waiting for lock

6

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

7

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

7

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

7

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

7

pthread cv usage
// MISSING: init calls, etc.
pthread_mutex_t lock;
bool finished; // data, only accessed with after acquiring lock
pthread_cond_t finished_cv; // to wait for 'finished' to be true

void WaitForFinished() {
pthread_mutex_lock(&lock);
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}
pthread_mutex_unlock(&lock);

}

void Finish() {
pthread_mutex_lock(&lock);
finished = true;
pthread_cond_broadcast(&finished_cv);
pthread_mutex_unlock(&lock);

}

acquire lock before
reading or writing finished

check whether we need to wait at all
(why a loop? we’ll explain later)

know we need to wait
(finished can’t change while we have lock)
so wait, releasing lock…

allow all waiters to proceed
(once we unlock the lock)

7

WaitForFinish timeline 1
WaitForFinish thread Finish thread
mutex_lock(&lock)
(thread has lock)

mutex_lock(&lock)
(start waiting for lock)

while (!finished) ...
cond_wait(&finished_cv, &lock);
(start waiting for cv) (done waiting for lock)

finished = true
cond_broadcast(&finished_cv)

(done waiting for cv)
(start waiting for lock)

mutex_unlock(&lock)
(done waiting for lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

8

WaitForFinish timeline 2
WaitForFinish thread Finish thread

mutex_lock(&lock)
finished = true
cond_broadcast(&finished_cv)
mutex_unlock(&lock)

mutex_lock(&lock)
while (!finished) ...
(finished now true, so return)
mutex_unlock(&lock)

9

why the loop
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

10

why the loop
while (!finished) {
pthread_cond_wait(&finished_cv, &lock);

}

we only broadcast if finished is true

so why check finished afterwards?

pthread_cond_wait manual page:
“Spurious wakeups ... may occur.”

spurious wakeup = wait returns even though nothing happened

10

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

unbounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

rule: never touch buffer
without acquiring lock

otherwise: what if two threads
simulatenously en/dequeue?
(both use same array/linked list entry?)
(both reallocate array?)

check if empty
if so, dequeue

okay because have lock
other threads cannot dequeue here

wake one Consume thread
if any are waiting

0 iterations: Produce() called before Consume()
1 iteration: Produce() signalled, probably
2+ iterations: spurious wakeup or …?

Thread 1 Thread 2
Produce()
…lock
…enqueue
…signal
…unlock

Consume()
…lock
…empty? no
…dequeue
…unlock
return

Thread 1 Thread 2
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock
return

waiting for
data_ready

Thread 1 Thread 2 Thread 3
Consume()
…lock
…empty? yes
…unlock/start wait

Produce()
…lock Consume()
…enqueue
…signal stop wait
…unlock lock

…empty? no
…dequeue
…unlock

…lock return
…empty? yes
…unlock/start wait

waiting for
data_ready

waiting for
lock

waiting for
lock

in pthreads: signalled thread not
gaurenteed to hold lock next

alternate design:
signalled thread gets lock next

called “Hoare scheduling”
not done by pthreads, Java, …

11

Hoare versus Mesa monitors
Hoare-style monitors

signal ‘hands off’ lock to awoken thread

Mesa-style monitors
any eligible thread gets lock next
(maybe some other idea of priority?)

every current threading library I know of does Mesa-style

12

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

13

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

13

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

13

bounded buffer producer/consumer
pthread_mutex_t lock;
pthread_cond_t data_ready; pthread_cond_t space_ready;
BoundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
while (buffer.full()) { pthread_cond_wait(&space_ready, &lock); }
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_cond_signal(&space_ready);
pthread_mutex_unlock(&lock);
return item;

}

correct (but slow?) to replace with:
pthread_cond_broadcast(&space_ready);

(just more “spurious wakeups”)

correct but slow to replace
data_ready and space_ready
with ‘combined’ condvar ready
and use broadcast
(just more “spurious wakeups”)

13

monitor pattern
pthread_mutex_lock(&lock);
while (!condition A) {

pthread_cond_wait(&condvar_for_A, &lock);
}
... /* manipulate shared data, changing other conditions */
if (set condition B) {

pthread_cond_broadcast(&condvar_for_B);
/* or signal, if only one thread cares */

}
if (set condition C) {

pthread_cond_broadcast(&condvar_for_C);
/* or signal, if only one thread cares */

}
...
pthread_mutex_unlock(&lock)

14

monitors rules of thumb
never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for

always write loop calling cond_wait to wait for condition X

broadcast/signal condition variable every time you change X

correct but slow to…
broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

15

monitors rules of thumb
never touch shared data without holding the lock
keep lock held for entire operation:

verifying condition (e.g. buffer not full) up to and including
manipulating data (e.g. adding to buffer)

create condvar for every kind of scenario waited for

always write loop calling cond_wait to wait for condition X

broadcast/signal condition variable every time you change X
correct but slow to…

broadcast when just signal would work
broadcast or signal when nothing changed
use one condvar for multiple conditions

15

mutex/cond var init/destroy
pthread_mutex_t mutex;
pthread_cond_t cv;
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cv, NULL);
// --OR--
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

// and when done:
...
pthread_cond_destroy(&cv);
pthread_mutex_destroy(&mutex);

16

monitor exercise: barrier
suppose we want to implement a one-use barrier; fill in blanks:
struct BarrierInfo {

pthread_mutex_t lock;
int total_threads; // initially total # of threads
int number_reached; // initially 0

};

void BarrierWait(BarrierInfo *b) {
pthread_mutex_lock(&b−>lock);
++b−>number_reached;
if (b−>number_reached == b−>total_threads) {

} else {

}
pthread_mutex_unlock(&b−>lock);

}

17

monitor exercise: ConsumeTwo
suppose we want producer/consumer, but…
but change Consume() to ConsumeTwo() which returns a pair of
values

and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

18

monitor exercise: solution (1)
(one of many possible solutions)
Assuming ConsumeTwo replaces Consume:
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
if (buffer.size() > 1) { pthread_cond_signal(&data_ready); }
pthread_mutex_unlock(&lock);

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

19

monitor exercise: solution (2)
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using two CVs):
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&one_ready);
if (buffer.size() > 1) { pthread_cond_signal(&two_ready); }
pthread_mutex_unlock(&lock);

}
Consume() {
pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&one_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {
pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&two_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

} 20

monitor exercise: slower solution
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using one CV):
Produce() {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
// broadcast and not signal, b/c we might wakeup only ConsumeTwo() otherwise
pthread_cond_broadcast(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {
pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&data_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {
pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

} 21

monitor exercise: ordering
suppose we want producer/consumer, but…

but want to ensure first call to Consume() always returns first

(no matter what ordering cond_signal/cond_broadcast use)
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

22

monitor ordering exercise: solution
(one of many possible solutions)
struct Waiter {

pthread_cond_t cv;
bool done;
T item;

}
Queue<Waiter*> waiters;

Produce(item) {
pthread_mutex_lock(&lock);
if (!waiters.empty()) {

Waiter *waiter = waiters.dequeue();
waiter->done = true;
waiter->item = item;
cond_signal(&waiter->cv);
++num_pending;

} else {
buffer.enqueue(item);

}
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
if (buffer.empty()) {
Waiter waiter;
cond_init(&waiter.cv);
waiter.done = false;
waiters.enqueue(&waiter);
while (!waiter.done)

cond_wait(&waiter.cv, &lock);
item = waiter.item;

} else {
item = buffer.dequeue();

}
pthread_mutex_unlock(&lock):
return item;

}

23

generalizing locks: semaphores
semaphore has a non-negative integer value and two operations:

P() or down or wait:
wait for semaphore to become positive (> 0),
then decerement by 1

V() or up or signal or post:
increment semaphore by 1 (waking up thread if needed)

P, V from Dutch: proberen (test), verhogen (increment)

24

semaphores are kinda integers
semaphore like an integer, but…

cannot read/write directly
down/up operaion only way to access (typically)
exception: initialization

never negative — wait instead
down operation wants to make negative? thread waits

25

reserving books
suppose tracking copies of library book…
Semaphore free_copies = Semaphore(3);
void ReserveBook() {

// wait for copy to be free
free_copies.down();
... // ... then take reserved copy

}

void ReturnBook() {
... // return reserved copy
free_copies.up();
// ... then wakekup waiting thread

}
26

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

27

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copiestaken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

27

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

2free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

27

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

27

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

27

counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

27

implementing mutexes with semaphores
struct Mutex {

Semaphore s; /* with inital value 1 */
/* value = 1 --> mutex if free */
/* value = 0 --> mutex is busy */

}

MutexLock(Mutex *m) {
m−>s.down();

}

MutexUnlock(Mutex *m) {
m−>s.up();

}

28

implementing join with semaphores
struct Thread {

...
Semaphore finish_semaphore; /* with initial value 0 */
/* value = 0: either thread not finished OR already joined */
/* value = 1: thread finished AND not joined */

};
thread_join(Thread *t) {

t−>finish_semaphore−>down();
}

/* assume called when thread finishes */
thread_exit(Thread *t) {

t−>finish_semaphore−>up();
/* tricky part: deallocating struct Thread safely? */

}

29

POSIX semaphores
#include <semaphore.h>
...
sem_t my_semaphore;
int process_shared = /* 1 if sharing between processes */;
sem_init(&my_semaphore, process_shared, initial_value);
...
sem_wait(&my_semaphore); /* down */
sem_post(&my_semaphore); /* up */
...
sem_destroy(&my_semaphore);

30

backup slides

31

exercise: wait for both finished
pthread_mutex_t lock; pthread_cond_t cv;
bool FirstFinished = false; bool SecondFinished = false;

void FinishFirst() {
pthread_mutex_lock(&lock);
FirstFinished = true;
____________________ // (1)
pthread_mutex_unlock(&lock);

}

void FinishSecond() {
pthread_mutex_lock(&lock);
SecondFinished = true;
____________________ // (1)
pthread_mutex_unlock(&lock);

}

void WaitForBothFinished() {
pthread_mutex_lock(&lock);
___ (____________________________) { // (2)

pthread_cond_wait(&lock, &cv);
}
pthread_mutex_unlock(&lock);

}

Fill in the blanks.
32

semaphores/CV
int num_waiting = 0;
bool finished = false;
sem_t mutex; // initially 1
sem_t gate; // initially 0
void WaitForFinished() {

sem_wait(&mutex);
if (finished) {

sem_post(&mutex);
} else {

num_waiting += 1;
sem_post(&mutex);
sem_wait(&gate);

}
}

void Finish() {
sem_wait(&mutex);
finished = true;
while (num_waiting > 0) {

num_waiting -= 1;
sem_post(&gate);

}
}

bool finished = false;
pthread_mutex_t mutex;
pthread_cond_t cv;

void WaitForFinished() {
pthread_mutex_lock(&mutex);
while (!finished) {

pthread_cond_wait(&cv, &mutex);
}
pthread_mutex_unlock(&mutex);

}

void Finish() {
pthread_mutex_lock(&mutex);
finished = true;
pthread_cond_broadcast(&cv);
pthread_mutex_unlock(&mutex);

}

33

semaphores/CV
int num_waiting = 0;
bool finished = false;
sem_t mutex; // initially 1
sem_t gate; // initially 0
void WaitForFinished() {

sem_wait(&mutex);
if (finished) {

sem_post(&mutex);
} else {

num_waiting += 1;
sem_post(&mutex);
sem_wait(&gate);

}
}

void Finish() {
sem_wait(&mutex);
finished = true;
while (num_waiting > 0) {

num_waiting -= 1;
sem_post(&gate);

}
}

bool finished = false;
pthread_mutex_t mutex;
pthread_cond_t cv;

void WaitForFinished() {
pthread_mutex_lock(&mutex);
while (!finished) {

pthread_cond_wait(&cv, &mutex);
}
pthread_mutex_unlock(&mutex);

}

void Finish() {
pthread_mutex_lock(&mutex);
finished = true;
pthread_cond_broadcast(&cv);
pthread_mutex_unlock(&mutex);

}

33

monitors with semaphores: chosen order
if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

34

monitors with semaphores: chosen order
if we want to make sure threads woken up in order
ThreadSafeQueue<sem_t> waiters;
Wait(Lock lock) {

sem_t private_semaphore;
... /* init semaphore

with count 0 */
waiters.Enqueue(&semaphore);
lock.Unlock();
sem_post(private_semaphore);
lock.Lock();

}

Signal() {
sem_t *next = waiters.DequeueOrNull();
if (next != NULL) {

sem_post(next);
}

}

(but now implement queue with semaphores…)

34

rwlock exercise (1)
suppose there are multiple waiting writers

which one gets waken up first?
whichever gets signal’d or gets lock first

could instead keep in order they started waiting

exercise: what extra information should we track?
hint: we might need an array

mutex_t lock; cond_t ok_to_read_cv, ok_to_write_cv;
int readers, writers, waiting_writers;

35

rwlock exercise solution?
list of waiting writes?
struct WaitingWriter {

cond_t cv;
bool ready;

};
Queue<WaitingWriter*> waiting_writers;

WriteLock(...) {
...
if (need to wait) {
WaitingWriter self;
self.ready = false;
...
while(!self.ready) {

pthread_cond_wait(&self.cv, &lock);
}

}
...

}
36

rwlock exercise solution?
dedicated writing thread with queue

(DoWrite∼Produce; WritingThread∼Consume)
ThreadSafeQueue<WritingTask*> waiting_writes;
WritingThread() {

while (true) {
WritingTask* task = waiting_writer.Dequeue();
WriteLock();
DoWriteTask(task);
task.done = true;
cond_broadcast(&task.cv);

}
}
DoWrite(task) {

// instead of WriteLock(); DoWriteTask(...); WriteUnlock()
WritingTask task = ...;
waiting_writes.Enqueue(&task);
while (!task.done) { cond_wait(&task.cv); }

}

37

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?

38

building semaphore with monitors (version B)
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* condition *just* became true */
if (count == 1) {

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

before: signal every time

can check if condition just became true instead?

but do we really need to broadcast?
38

exercise: why broadcast?
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
if (count == 1) { /* became > 0 */

pthread_cond_broadcast(
&count_is_positive_cv

);
}
pthread_mutex_unlock(&lock);

}

exercise: why can’t this be pthread_cond_signal?

hint: think of two threads calling down + two calling up?

brute force: only so many orders they can get the lock in
39

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

40

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

40

broadcast problem
Thread 1 Thread 2 Thread 3 Thread 4

Down()
lock
count == 0? yes
unlock/wait

Down()
lock
count == 0? yes
unlock/wait

Up()
lock
count += 1 (now 1) Up()

stop waiting on CV signal wait for lock
wait for lock unlock wait for lock
wait for lock lock
wait for lock count += 1 (now 2)
wait for lock count != 1: don’t signal
lock unlock
count == 0? no
count -= 1 (becomes 1)
unlock

still waiting???

Mesa-style monitors
signalling doesn’t
“hand off” lock

40

	monitors
	introduction
	example: WaitForFinished
	unbounded queue with monitors
	Hoare scheduling note
	bounded producer/consumer with monitors
	general monitor pattern
	monitor POSIX API details
	exercise: barrier
	exercise: ConsumeTwo
	exercise: ordering

	counting semaphores
	introduction
	examples
	POSIX semaphores

	backup slides
	exercise: both-finished
	example: simulating broadcast
	monitors with semaphore: gaurenteed order
	rwlock exercise: ordering
	semaphores with monitors: broadcast?

