
semaphores / rwlocks / deadlock

1

last time (1)
monitor = mutex + condition variable pattern

lock for all accesses to shared data
while (condition based on shared data) wait
after changing condition broadcast (or signal)
picky about who goes first: more specific conditions

Mesa-style monitors (vs Hoare-style)
signal/broadcasted threads might not get lock next
easier to implement (and most common)
usually need while loop even w/o spurious wakeups

producer/consumer with monitors
condition = buffer empty/full
could signal instead of broadcast b/c only one thread

2

last time (2)
counting semaphores

hold one non-negative integer
down/wait: decrement that integer (waiting for it to be positive first)
up/post: increment that integer (possibly wake up thread)

semaphore intuition
library book example: semaphore tracks amount of resource that’s free
down/wait: reserve one of them, waiting if needed
up/post: put back one

implementing locks with semaphores

3

implementing mutexes with semaphores
struct Mutex {

Semaphore s; /* with inital value 1 */
/* value = 1 --> mutex if free */
/* value = 0 --> mutex is busy */

}

MutexLock(Mutex *m) {
m−>s.down();

}

MutexUnlock(Mutex *m) {
m−>s.up();

}

4

implementing join with semaphores
struct Thread {

...
Semaphore finish_semaphore; /* with initial value 0 */
/* value = 0: either thread not finished OR already joined */
/* value = 1: thread finished AND not joined */

};
thread_join(Thread *t) {

t−>finish_semaphore−>down();
}

/* assume called when thread finishes */
thread_exit(Thread *t) {

t−>finish_semaphore−>up();
/* tricky part: deallocating struct Thread safely? */

}

5

POSIX semaphores
#include <semaphore.h>
...
sem_t my_semaphore;
int process_shared = /* 1 if sharing between processes */;
sem_init(&my_semaphore, process_shared, initial_value);
...
sem_wait(&my_semaphore); /* down */
sem_post(&my_semaphore); /* up */
...
sem_destroy(&my_semaphore);

6

semaphore exercise
int value; sem_t empty, ready; // with some initial values

void PutValue(int argument) {
sem_wait(&empty);
value = argument;
sem_post(&ready);

}

int GetValue() {
int result;

result = value;

return result;

}

GetValue() waits for PutValue() to happen, retrieves value, then allows next
PutValue().
PutValue() waits for prior GetValue(), places value, then allows next GetValue().

What goes in the blanks?
A: sem_post(&empty) / sem_wait(&ready)
B: sem_wait(&ready) / sem_post(&empty)
C: sem_post(&ready) / sem_wait(&empty)
D: sem_post(&ready) / sem_post(&empty)
E: sem_wait(&empty) / sem_post(&ready)
F: something else

7

semaphore exercise [solution]
int value;
sem_t empty, ready;
void PutValue(int argument) {

sem_wait(&empty);
value = argument;
sem_post(&ready);

}
int GetValue() {

int result;
sem_wait(&ready);
result = value;
sem_post(&empty);
return result;

}

9

semaphore intuition
What do you need to wait for?

critical section to be finished
queue to be non-empty
array to have space for new items

what can you count that will be 0 when you need to wait?
of threads that can start critical section now
of threads that can join another thread without waiting
of items in queue
of empty spaces in array

use up/down operations to maintain count

10

producer/consumer constraints
consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

11

producer/consumer constraints
consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

11

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

12

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

12

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

12

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?

No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

12

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

12

producer/consumer: cannot reorder
mutex/empty
ProducerReordered() {

// BROKEN: WRONG ORDER
sem_wait(&mutex);
sem_wait(&empty_slots);

...

sem_post(&mutex);

Consumer() {
sem_wait(&full_slots);

// can't finish until
// Producer's sem_post(&mutex):
sem_wait(&mutex);

...

// so this is not reached
sem_post(&full_slots);

13

producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...

Produce(item) {
sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

14

producer/consumer summary
producer: wait (down) empty_slots, post (up) full_slots

consumer: wait (down) full_slots, post (up) empty_slots

two producers or consumers?
still works!

15

binary semaphores
binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores
exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

16

gate intuition/pattern
pattern to allow one thread at a time:
sem_t gate; // 0 = closed; 1 = open
ReleasingThread() {

... // finish what the other thread is waiting for
while (another thread is waiting and can go) {

sem_post(&gate) // allow EXACTLY ONE thread
... // other bookkeeping

}
...

}
WaitingThread() {

... // indicate that we're waiting
sem_wait(&gate) // wait for gate to be open
... // indicate that we're not waiting

}

17

Anderson-Dahlin and semaphores
Anderson/Dahlin complains about semaphores

“Our view is that programming with locks and condition variables is
superior to programming with semaphores.”

argument 1: clearer to have separate constructs for
waiting for condition to be come true, and
allowing only one thread to manipulate a thing at a time

arugment 2: tricky to verify thread calls up exactly once for every
down

alternatives allow one to be sloppier (in a sense)

18

reader/writer problem
some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

19

reader/writer problem
some shared data

only one thread modifying (read+write) at a time

read-only access from multiple threads is safe

could use lock — but doesn’t allow multiple readers

19

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

20

reader/writer locks
abstraction: lock that distinguishes readers/writers

operations:
read lock: wait until no writers
read unlock: stop being registered as reader
write lock: wait until no readers and no writers
write unlock: stop being registered as writer

20

pthread rwlocks
pthread_rwlock_t rwlock;
pthread_rwlock_init(&rwlock, NULL /* attributes */);
...

pthread_rwlock_rdlock(&rwlock);
... /* read shared data */
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
... /* read+write shared data */
pthread_rwlock_unlock(&rwlock);

...
pthread_rwlock_destroy(&rwlock);

21

rwlock effects exercise
pthread_rwlock_t lock;
void ThreadA() {

pthread_rwlock_rdlock(&lock);
puts("a");
...
puts("A");
pthread_rwlock_unlock(&lock);

}
void ThreadB() {

pthread_rwlock_rdlock(&lock);
puts("b");
...
puts("B");
pthread_rwlock_unlock(&lock);

}

void ThreadC() {
pthread_rwlock_wrlock(&lock);
puts("c");
...
puts("C");
pthread_rwlock_unlock(&lock);

}
void ThreadD() {
pthread_rwlock_wrlock(&lock);
puts("d");
...
puts("D");
pthread_rwlock_unlock(&lock);

}

exercise: which of these outputs are possible?
1. aAbBcCdD 2. abABcdDC 3. cCabBAdD
4. cdCDaAbB 5. caACdDbB

22

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

lock to protect shared state

23

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

state: number of active readers, writers

23

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

conditions to wait for (no readers or writers, no writers)

23

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

broadcast — wakeup all readers when no writers

23

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

wakeup a single writer when no readers or writers

23

rwlocks with monitors (attempt 1)
mutex_t lock;
unsigned int readers, writers;
/* condition, signal when writers becomes 0 */
cond_t ok_to_read_cv;
/* condition, signal when readers + writers becomes 0 */
cond_t ok_to_write_cv;
ReadLock() {

mutex_lock(&lock);
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}
ReadUnlock() {

mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (readers + writers != 0) {

cond_wait(&ok_to_write_cv);
}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
cond_signal(&ok_to_write_cv);
cond_broadcast(&ok_to_read_cv);
mutex_unlock(&lock);

}

problem: wakeup readers first or writer first?
this solution: wake them all up and they fight! inefficient!

23

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

key method: track number of waiting readers/writers

24

reader/writer-priority
policy question: writers first or readers first?

writers-first: no readers go when writer waiting
readers-first: no writers go when reader waiting

previous implementation: whatever randomly happens
writers signalled first, maybe gets lock first?
…but non-determinstic in pthreads

can make explicit decision

key method: track number of waiting readers/writers

24

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
25

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
25

writer-priority (1)
mutex_t lock; cond_t ok_to_read_cv; cond_t ok_to_write_cv;
int readers = 0, writers = 0;
int waiting_writers = 0;
ReadLock() {
mutex_lock(&lock);
while (writers != 0

|| waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers;
++writers;
mutex_unlock(&lock);

}

WriteUnlock() {
mutex_lock(&lock);
--writers;
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}
25

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)

...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

simulation of reader/write lock
writer-priority version

W = writers, R = readers, WW = waiting_writers
reader 1 reader 2 writer 1 reader 3 W R WW

0 0 0
ReadLock 0 1 0
(reading) ReadLock 0 2 0
(reading) (reading) WriteLock wait 0 2 1
(reading) (reading) WriteLock wait ReadLock wait 0 2 1
ReadUnlock (reading) WriteLock wait ReadLock wait 0 1 1

ReadUnlock WriteLock wait ReadLock wait 0 0 1
WriteLock ReadLock wait 1 0 0
(read+writing) ReadLock wait 1 0 0
WriteUnlock ReadLock wait 0 0 0

ReadLock 0 1 0

mutex_lock(&lock);
while (writers != 0 || waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

mutex_lock(&lock);
++waiting_writers;
while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}

mutex_lock(&lock);
--readers;
if (readers == 0)
...

mutex_lock(&lock);
--readers;
if (readers == 0)
cond_signal(&ok_to_write_cv)

mutex_unlock(&lock);

while (readers + writers != 0) {
cond_wait(&ok_to_write_cv, &lock);

}
--waiting_writers; ++writers;
mutex_unlock(&lock);

mutex_lock(&lock);
if (waiting_writers != 0) {

cond_signal(&ok_to_write_cv);
} else {
cond_broadcast(&ok_to_read_cv);

}

while (writers != 0 && waiting_writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
++readers;
mutex_unlock(&lock);

26

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

27

reader-priority (1)
...
int waiting_readers = 0;
ReadLock() {
mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
...
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

}
}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers +

readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {
mutex_lock(&lock);
--writers;
if (readers == 0 && waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

}

27

rwlock exercise
suppose we want something in-between reader and writer priority:
reader-priority except if writers wait more than 1 second
exercise: what do we change?
...
int waiting_readers = 0;
ReadLock() {

mutex_lock(&lock);
++waiting_readers;
while (writers != 0) {
cond_wait(&ok_to_read_cv, &lock);

}
--waiting_readers;
++readers;
mutex_unlock(&lock);

}

ReadUnlock() {
mutex_lock(&lock);
--readers;
if (waiting_readers == 0 &&

readers == 0) {
cond_signal(&ok_to_write_cv);

}
mutex_unlock(&lock);

}

WriteLock() {
mutex_lock(&lock);
while (waiting_readers + readers + writers != 0) {
cond_wait(&ok_to_write_cv);

}
++writers;
mutex_unlock(&lock);

}
WriteUnlock() {

mutex_lock(&lock);
--writers;
if (waiting_readers == 0) {
cond_signal(&ok_to_write_cv);

} else {
cond_broadcast(&ok_to_read_cv);

}
mutex_unlock(&lock);

} 28

the one-way bridge

29

the one-way bridge

29

the one-way bridge

29

the one-way bridge

29

pipe() deadlock
BROKEN example:
int child_to_parent_pipe[2], parent_to_child_pipe[2];
pipe(child_to_parent_pipe); pipe(parent_to_child_pipe);
if (fork() == 0) {

/* child */
write(child_to_parent_pipe[1], buffer, HUGE_SIZE);
read(parent_to_child_pipe[0], buffer, HUGE_SIZE);
exit(0);

} else {
/* parent */
write(parent_to_child_pipe[1], buffer, HUGE_SIZE);
read(child_to_parent[0], buffer, HUGE_SIZE);

}

This will hang forever (if HUGE_SIZE is big enough).

30

deadlock waiting
child writing to pipe waiting for free buffer space

…which will not be available until parent reads

parent writing to pipe waiting for free buffer space

…which will not be available until child reads

31

circular dependency
parent to child

pipe buffer

child to parent
pipe buffer

parent
process

child
process

waiting for space
to write

waiting for space
to write

needs to be
read by process
to free space

needs to be
read by process
to free space

32

moving two files
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
mutex_lock(&from_dir−>lock);
mutex_lock(&to_dir−>lock);

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")

33

moving two files: lucky timeline (1)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

lock(&B->lock);
lock(&A->lock);
(do move)
unlock(&B->lock);
unlock(&A->lock);

34

moving two files: lucky timeline (2)
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);
lock(&B->lock);

lock(&B->lock…
(do move) (waiting for B lock)
unlock(&B->lock);

lock(&B->lock);
lock(&A->lock…

unlock(&A->lock);
lock(&A->lock);
(do move)
unlock(&A->lock);
unlock(&B->lock);

35

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

36

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

36

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

36

moving two files: unlucky timeline
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock);

lock(&B->lock);
lock(&B->lock… stalled
(waiting for lock on B) lock(&A->lock… stalled
(waiting for lock on B) (waiting for lock on A)

(do move) unreachable (do move) unreachable
unlock(&B->lock); unreachable unlock(&A->lock); unreachable
unlock(&A->lock); unreachable unlock(&B->lock); unreachable

Thread 1 holds A lock, waiting for Thread 2 to release B lock
Thread 2 holds B lock, waiting for Thread 1 to release A lock

36

moving two files: dependencies
directory B

directory A

thread 1 thread 2

waiting for lock

waiting for lock

lock held by

lock held by

37

moving three files: dependencies
directory B

directory Cdirectory A

thread 1 thread 2

thread 3

waiting for lock

waiting for lock

waiting for lock

lock held by

lock held by

lock held by

38

moving three files: unlucky timeline
Thread 1 Thread 2 Thread 3

MoveFile(A, B, "foo") MoveFile(B, C, "bar") MoveFile(C, A, "quux")

lock(&A->lock);

lock(&B->lock);

lock(&C->lock);

lock(&B->lock… stalled

lock(&C->lock… stalled

lock(&A->lock… stalled

39

deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order

40

deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled

41

free space: dependency graph
memory in
2 (1MB) units

thread 1 thread 2

allocated

waiting for

42

deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

43

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

44

deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks

44

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

45

deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix

45

deadlock requirements
mutual exclusion

one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can’t ‘steal’

circular wait
there exists a set {T1, . . . , Tn} of waiting threads such that

T1 is waiting for a resource held by T2
T2 is waiting for a resource held by T3
…
Tn is waiting for a resource held by T1

46

backup slides

47

deadlock detection
idea: search for cyclic dependencies

48

detecting deadlocks on locks
let’s say I want to detect deadlocks that only involve mutexes

goal: help programmers debug deadlocks

…by modifying my threading library:
struct Thread {

... /* stuff for implementing thread */
/* what extra fields go here? */

};

struct Mutex {
... /* stuff for implementing mutex */
/* what extra fields go here? */

};

49

deadlock detection
idea: search for cyclic dependencies

need:
list of all contended resources
what thread is waiting for what?
what thread ‘owns’ what?

50

aside: divisible resources
deadlock is possible with divislbe resources like memory,…

example: suppose 6MB of RAM for threads total:
thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?

not a deadlock — thread 3 can still finish
and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

51

aside: divisible resources
deadlock is possible with divislbe resources like memory,…

example: suppose 6MB of RAM for threads total:
thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?

not a deadlock — thread 3 can still finish
and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM

51

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

52

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

52

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

52

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

52

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

52

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

52

divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish

52

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock

deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

53

divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock
deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory

53

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

54

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

54

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

54

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

54

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

54

divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want

54

deadlock detection with divisibe resources
can’t rely on cycles in graphs in this case

alternate algorithm exists
similar technique to how we showed no deadlock

high-level intuition: simulate what could happen
find threads that could finish based on resources available now

full details: look up Baker’s algorithm

55

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…
everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

56

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

56

dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…

everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse

56

monitors with semaphores: locks
sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}

57

monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

58

monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

58

monitors with semaphores: cvs (better)
start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

59

monitors with semaphores: broadcast
now allows broadcast:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

60

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

61

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

61

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

61

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 61

building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes 61

counting semaphores with binary semaphores
via Hemmendinger, “Comments on ‘A correect and unrestrictive implementation of general semaphores’ ” (1989); Barz, “Implementing semaphores by binary

semaphores” (1983)

// assuming initialValue > 0
BinarySemaphore mutex(1);
int value = initialValue ;
BinarySemaphore gate(1 /* if initialValue >= 1 */);

/* gate = # threads that can Down() now */

void Down() {
gate.Down();
// wait, if needed
mutex.Down();
value -= 1;
if (value > 0) {

gate.Up();
// because next down should finish
// now (but not marked to before)

}
mutex.Up();

}

void Up() {
mutex.Down();
value += 1;
if (value == 1) {
gate.Up();
// because down should finish now
// but could not before

}
mutex.Up();

}

62

monitor exercise: ordering
suppose we want producer/consumer, but…

but want to ensure first call to Consume() always returns first

(no matter what ordering cond_signal/cond_broadcast use)
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

63

monitor ordering exercise: solution
(one of many possible solutions)
struct Waiter {

pthread_cond_t cv;
bool done;
T item;

}
Queue<Waiter*> waiters;

Produce(item) {
pthread_mutex_lock(&lock);
if (!waiters.empty()) {

Waiter *waiter = waiters.dequeue();
waiter->done = true;
waiter->item = item;
cond_signal(&waiter->cv);
++num_pending;

} else {
buffer.enqueue(item);

}
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
if (buffer.empty()) {
Waiter waiter;
cond_init(&waiter.cv);
waiter.done = false;
waiters.enqueue(&waiter);
while (!waiter.done)

cond_wait(&waiter.cv, &lock);
item = waiter.item;

} else {
item = buffer.dequeue();

}
pthread_mutex_unlock(&lock):
return item;

}

64

allocating all at once?
for resources like disk space, memory

figure out maximum allocation when starting thread
“only” need conservative estimate

only start thread if those resources are available

okay solution for embedded systems?

65

	examples
	POSIX semaphores
	semaphore exercise
	semaphore intuition
	producer/consumer with counting semaphores
	aside: binary semaphores
	semaphore gate pattern
	the textbook's complaint about semaphores
	reader-writer locks
	reader/writer problem
	reader/writer locks
	reader/writer lock usage exericse
	implementing rwlocks with monitors
	priority concept
	writer-priority
	writer-priority walkthrough
	reader-priority

	reader/writer lock exercise: timeout priority

	deadlock examples
	a one-way bridge
	with pipes
	with locks
	with memory

	definition
	short intuition
	conditions for deadlock

	backup slides
	deadlock detection
	problem with divisible resources?

	dining philosophers

	relating monitors and semaphores
	implementing monitors with semaphores
	implementing semaphores with monitors
	counting to binary semaphores
	exercise: ordering
	pre-requesting maximum resources

