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last time
counting semaphores

down: decrement — wait first if would be negative
up: increment — wake up if another thread waiting
intuition: number that should be zero when waiting

reader/writer locks
multiple readers share lock
single writer at a time
priority question: prefer readers or writers or other?

deadlocks
circular dependencies resulting in indefinite waiting
common with locks, but can happen with many resources
classic example T1: Lock(A) Lock(B); T2: Lock(B) Lock(A)
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deadlock
deadlock — circular waiting for resources

resource = something needed by a thread to do work
locks
CPU time
disk space
memory
…

often non-deterministic in practice

most common example: when acquiring multiple locks
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deadlock versus starvation
starvation: one+ unlucky (no progress), one+ lucky (yes progress)

example: low priority threads versus high-priority threads

deadlock: no one involved in deadlock makes progress

starvation: once starvation happens, taking turns will resolve
low priority thread just needed a chance…

deadlock: once it happens, taking turns won’t fix
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deadlock requirements
mutual exclusion

one thread at a time can use a resource

hold and wait
thread holding a resources waits to acquire another resource

no preemption of resources
resources are only released voluntarily
thread trying to acquire resources can’t ‘steal’

circular wait
there exists a set {T1, . . . , Tn} of waiting threads such that

T1 is waiting for a resource held by T2
T2 is waiting for a resource held by T3
…
Tn is waiting for a resource held by T1
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how is deadlock possible?
Given list: A, B, C, D, E
RemoveNode(LinkedListNode *node) {

pthread_mutex_lock(&node−>lock);
pthread_mutex_lock(&node−>prev−>lock);
pthread_mutex_lock(&node−>next−>lock);
node−>next−>prev = node−>prev;
node−>prev−>next = node−>next;
pthread_mutex_unlock(&node−>next−>lock);
pthread_mutex_unlock(&node−>prev−>lock);
pthread_mutex_unlock(&node−>lock);

}

Which of these (all run in parallel) can deadlock?
A. RemoveNode(B) and RemoveNode(C)
B. RemoveNode(B) and RemoveNode(D)
C. RemoveNode(B) and RemoveNode(C) and RemoveNode(D)
D. A and C E. B and C
F. all of the above G. none of the above 6



how is deadlock — solution
Remove B Remove C
lock B lock C
lock A (prev) wait to lock B (prev)
wait to lock C (next)

With B and D — only overlap in in node C — no circular wait possible
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deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…
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acquiring locks in consistent order (1)
MoveFile(Dir* from_dir, Dir* to_dir, string filename) {
if (from_dir−>path < to_dir−>path) {
lock(&from_dir−>lock);
lock(&to_dir−>lock);

} else {
lock(&to_dir−>lock);
lock(&from_dir−>lock);

}
...

}

any ordering will do
e.g. compare pointers
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acquiring locks in consistent order (2)
often by convention, e.g. Linux kernel comments:
/*
* ...
* Lock order:
* contex.ldt_usr_sem
* mmap_sem
* context.lock
*/

/*
* ...
* Lock order:
* 1. slab_mutex (Global Mutex)
* 2. node->list_lock
* 3. slab_lock(page) (Only on some arches and for debugging)
* ...
*/
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deadlock prevention techniques
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beyond threads: event based programming
writing server that servers multiple clients?

e.g. multiple web browsers at a time

maybe don’t really need multiple processors/cores
one network, not that fast

idea: one thread handles multiple connections

issue: read from/write to multiple streams at once?
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event loops
while (true) {

event = WaitForNextEvent();
switch (event.type) {
case NEW_CONNECTION:

handleNewConnection(event); break;
case CAN_READ_DATA_WITHOUT_WAITING:

connection = LookupConnection(event.fd);
handleRead(connection);
break;

case CAN_WRITE_DATA_WITHOUT_WAITING:
connection = LookupConnection(event.fd);
handleWrite(connection);
break;
...

}
}
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POSIX support for event loops
select and poll functions

take list(s) of file descriptors to read and to write
wait for them to be read/writeable without waiting
(or for new connections associated with them, etc.)

many OS-specific extensions/improvements/alternatives:
examples: Linux epoll, Windows IO completion ports
better ways of managing list of file descriptors
enqueue read/write instead of learning when read/write okay
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message passing
instead of having variables, locks between threads…

send messages between threads/processes

what you need anyways between machines
big ‘supercomputers’ = really many machines together

arguably an easier model to program
can’t have locking issues
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a prereq note
in CS 3330 or CoA 2, we cover virtual memory for several days

CS3330 = Computer Architecture
CoA2 = Computer Organization and Architecture 2 in the CS 2020
curriculum pilot

for CpEs: the prereq for this class is ECE’s embedded class

(and not the CpE architecture class)

I think little virtual memory coverage in CpE embedded or
architecture?

don’t have precise information about that

23



scheduling note on paging/protection
not sure if we’ll get to enough for next assignment by Thursday

may adjust deadlines for that (and future assignments)
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address translation

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only
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toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset
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toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual
page #

physical
page #

00 010 (2)
01 111 (7)
10 none
11 000 (0)

page table!
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toy page table lookup

virtual
page # valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to cache (data or instruction)

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”
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x86-32: VPN and PO
32-bit x86: 4096 byte (212 byte) pages

given virtual address 0xABCD0123

virtual page number =

page offset =

if that virtual page maps to physical page 0x998

physical address =

30



x86-32: VPN and PO (solution)
32-bit x86: 4096 byte (212 byte) pages

given virtual address 0xABCD0123

virtual page number = 0xABCD0

page offset = 0x123

if that virtual page maps to physical page 0x998

physical address = 0x998123
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32-bit x86 flat page table???

virtual
page # valid? physical page # read

OK?
write
OK?

0x00000 0 ??? (null pointers) 0 0
0x00001 1 0x44423 (code 1) 1 0
0x00002 1 0x77483 (code 2) 1 0

… … … … …
0x7FFFE 1 0x78849 (stack 15) 1 1
0x7FFFF 1 0x78851 (stack 16) 1 1

… … … … …
0xFFFFF 1 0x99943 (OS stuff) 1 1

0x7FFFE 348 — address from CPU

trigger exception if 0?
0x78849 348

to cache

220 entries???
way too big!
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storing huge page table?
keep it in memory

add special cache for page table entries to handle memory being slow
special cached called translation lookaside buffer (TLB)

use a tree and don’t store most invalid page table entries
take advantage of large contiguous invalid regions
(between stack and heap, most high memory addresses, etc.)
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two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

x86-32: arrays of 210 32-bit
page table entries

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

pointers to page tables
(arrays of PTEs)
but using page number
(not byte number)

valid bits indicate “holes”
note: physical page 0 is valid
so can’t use NULL ptrs

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table
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invalid entries represent big holes
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first-level page table

pointers to page tables
(arrays of PTEs)
but using page number
(not byte number)

valid bits indicate “holes”
note: physical page 0 is valid
so can’t use NULL ptrs
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physical page #
(of data)
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… … … … …
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a second-level page table

35



two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

x86-32: arrays of 210 32-bit
page table entries

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

pointers to page tables
(arrays of PTEs)
but using page number
(not byte number)

valid bits indicate “holes”
note: physical page 0 is valid
so can’t use NULL ptrs

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

35



two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

x86-32: arrays of 210 32-bit
page table entries

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

pointers to page tables
(arrays of PTEs)
but using page number
(not byte number)

valid bits indicate “holes”
note: physical page 0 is valid
so can’t use NULL ptrs

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

35



two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

x86-32: arrays of 210 32-bit
page table entries

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

pointers to page tables
(arrays of PTEs)
but using page number
(not byte number)

valid bits indicate “holes”
note: physical page 0 is valid
so can’t use NULL ptrs

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

35



two-level page tables

for VPN 0x0-0x3FF
for VPN 0x400-0x7FF
for VPN 0x800-0xBFF
for VPN 0xC00-0xFFF

…
for VPN 0xFF800-0xFFBFF
for VPN 0xFFC00-0xFFFFF

first-level page table

two-level page table; 220 pages total; 210 entries per table

PTE for VPN 0x000
PTE for VPN 0x001
PTE for VPN 0x002
PTE for VPN 0x003

…
PTE for VPN 0x3FF

second-level page tables
actual data
(if PTE valid)

PTE for VPN 0xC00
PTE for VPN 0xC01
PTE for VPN 0xC02
PTE for VPN 0xC03

…
PTE for VPN 0xFFF

x86-32: arrays of 210 32-bit
page table entries

invalid entries represent big holes

VPN range valid user? write?
physical page #
(of next page table)

0x0-0x3FF 1 1 1 0x22343
0x400-0x7FF 0 0 1 0x00000
0x800-0xBFF 0 0 0 0x00000
0xC00-0xFFF 1 1 0 0x33454
0x1000-0x13FF 1 1 0 0xFF043
… … … … …
0xFFC00-0xFFFFF 1 1 0 0xFF045

first-level page table

pointers to page tables
(arrays of PTEs)
but using page number
(not byte number)

valid bits indicate “holes”
note: physical page 0 is valid
so can’t use NULL ptrs

VPN valid user? write?
physical page #
(of data)

0xC00 1 1 0 0x42443
0xC01 1 1 0 0x4A9DE
0xC02 1 1 0 0x5C001
0xC03 0 0 0 0x00000
0xC04 1 1 0 0x6C223
… … … … …
0xFFF 0 0 0 0x00000

a second-level page table

35



two-level page table naming
what the page table base register points to:

first-level page table

top-level page table

page directory (Intel’s term, used in xv6 code)

what first-level page table entries point to

second-level page table
page table (Intel’s term, used in xv6 code)

I’ll avoid using this term unqualified…
but Intel manuals/xv6 do not
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32-bit x86 paging
4096 (= 212) byte pages

4-byte page table entries — stored in memory

two-level table:
first 10 bits lookup in first level (“page directory”)
second 10 bits lookup in second level

remaining 12 bits: which byte of 4096 in page?
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32-bit x86 paging (in xv6)
xv6 header: mmu.h
// A virtual address 'va' has a three-part structure as follows:
//
// +--------10------+-------10-------+---------12----------+
// | Page Directory | Page Table | Offset within Page |
// | Index | Index | |
// +----------------+----------------+---------------------+
// \--- PDX(va) --/ \--- PTX(va) --/

// page directory index
#define PDX(va) (((uint)(va) >> PDXSHIFT) & 0x3FF)

// page table index
#define PTX(va) (((uint)(va) >> PTXSHIFT) & 0x3FF)

// construct virtual address from indexes and offset
#define PGADDR(d, t, o) ((uint)((d) << PDXSHIFT | (t) << PTXSHIFT | (o)))
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another view
VPN part 1 VPN part 2 page offset

first-level
page table

page table base register

page table entry
second-level
page table

page table entry

physical page
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exercise (1)
4096 (= 212) byte pages

4-byte page table entries — stored in memory

two-level table:
first 10 bits lookup in first level (“page directory”)
second 10 bits lookup in second level

exercise:
virtual address 0x12345678
base pointer 0x1000 (byte address)
first-level PTE contents: PPN 0x14; second-level PTE: PPN 0x15

address of 1st-level PTE? of second-level PTE?
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exercise (2)
4096 (= 212) byte pages

4-byte page table entries — stored in memory

two-level table:
first 10 bits lookup in first level (“page directory”)
second 10 bits lookup in second level

exercise: how big is…
a process’s x86-32 page tables with 1 valid 4K page?
a process’s x86-32 page tables with all 4K pages populated?
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exercise (2)
4096 (= 212) byte pages

4-byte page table entries — stored in memory

two-level table:
first 10 bits lookup in first level (“page directory”)
second 10 bits lookup in second level

exercise: how big is…
a process’s x86-32 page tables with 1 valid 4K page? 2 pages (1
first-level, 1 second)
a process’s x86-32 page tables with all 4K pages populated? 1025 pages
(1 first-level, 1024 second)
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backup slides
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message passing API
core functions: Send(toId, data)/Recv(fromId, data)

simplest(?) version: functions wait for other processes/threads
if (thread_id == 0) {

for (int i = 1; i < MAX_THREAD; ++i) {
Send(i, getWorkForThread(i));

}
for (int i = 1; i < MAX_THREAD; ++i) {

WorkResult result;
Recv(i, &result);
handleResultForThread(i, result);

}
} else {

WorkInfo work;
Recv(0, &work);
Send(0, ComputeResultFor(work));

}
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message passing game of life

process 4

process 3

process 2 divide grid
like you would for normal threads

each process stores cells
in that part of grid

(no shared memory!)

process 3 only needs values
of cells around its area
(values of cells adjacent to
the ones it computes)

small slivers of
other process’s cells needed

solution: process 2, 4
send messages with cells every iteration

some of process 3’s cells
also needed by process 2/4

so process 3 also sends messages

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)

one possible pseudocode:
all even processes send messages
(while odd receives), then
all odd processes send messages
(while even receives)
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some single-threaded processing code
void ProcessRequest(int fd) {
while (true) {
char command[1024] = {};
size_t command_length = 0;
do {

ssize_t read_result =
read(fd, command + command_length,

sizeof(command) − command_length);
if (read_result <= 0) handle_error();
command_length += read_result;

} while (command[command_length − 1] != '\n');
if (IsExitCommand(command)) { return; }
char response[1024];
computeResponse(response, commmand);
size_t total_written = 0;
while (total_written < sizeof(response)) {

...
}

}
}

original code: loop to handle one request
reads/writes multiple times; each read/write can block

struct Connection {
int fd;
char command[1024];
size_t command_length;
char response[1024];
size_t total_written;
...

};
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as event code
handleRead(Connection *c) {

ssize_t read_result =
read(fd, c−>command + command_length,

sizeof(command) − c−>command_length);
if (read_result <= 0) handle_error();
c−>command_length += read_result;

if (c−>command[c−>command_length − 1] == '\n') {
StopWaitingToRead(c−>fd);
if (IsExitCommand(command)) { CleanupConnection(c); return; }
computeResponse(c−>response, c−>command);
StartWaitingToWrite(c−>fd);

}
}

new code: one read step per handleRead call
Connection struct: info between write calls
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as event code
handleRead(Connection *c) {
ssize_t read_result =

read(fd, c->command + command_length,
sizeof(command) - c->command_length);

if (read_result <= 0) handle_error();
c->command_length += read_result;

if (c->command[c->command_length - 1] == '\n') {
StopWaitingToRead(c->fd);
if (IsExitCommand(command)) { CleanupConnection(c); return; }
computeResponse(c->response, c->command);
StartWaitingToWrite(c->fd);

}
}

...
do {

ssize_t read_result =
read(fd, command + command_length,

sizeof(command) - command_length);
if (read_result <= 0) handle_error();
command_length += read_result;

} while (command[command_length - 1] != '\n');
if (IsExitCommand(command)) { return; }
computeResponse(response, commmand);
... // write response
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deadlock with free space
Thread 1 Thread 2

AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB) AllocateOrWaitFor(1 MB)
(do calculation) (do calculation)
Free(1 MB) Free(1 MB)
Free(1 MB) Free(1 MB)

2 MB of space — deadlock possible with unlucky order
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deadlock with free space (unlucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)

AllocateOrWaitFor(1 MB… stalled
AllocateOrWaitFor(1 MB… stalled
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free space: dependency graph
memory in
2 (1MB) units

thread 1 thread 2

allocated

waiting for
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deadlock with free space (lucky case)
Thread 1 Thread 2

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);

AllocateOrWaitFor(1 MB)
AllocateOrWaitFor(1 MB)
(do calculation)
Free(1 MB);
Free(1 MB);
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AllocateOrFail
Thread 1 Thread 2

AllocateOrFail(1 MB)
AllocateOrFail(1 MB)

AllocateOrFail(1 MB) fails!
AllocateOrFail(1 MB) fails!

Free(1 MB) (cleanup after failure)
Free(1 MB) (cleanup after failure)

okay, now what?
give up?
both try again? — maybe this will keep happening? (called livelock)
try one-at-a-time? — gaurenteed to work, but tricky to implement
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AllocateOrSteal
Thread 1 Thread 2

AllocateOrSteal(1 MB)
AllocateOrSteal(1 MB)

AllocateOrSteal(1 MB) Thread killed to free 1MB
(do work)

problem: can one actually implement this?

problem: can one kill thread and keep system in consistent state?
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fail/steal with locks
pthreads provides pthread_mutex_trylock — “lock or fail”

some databases implement revocable locks
do equivalent of throwing exception in thread to ‘steal’ lock
need to carefully arrange for operation to be cleaned up
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stealing locks???
how do we make stealing locks possible

unclean: just kill the thread
problem: inconsistent state?

clean: have code to undo partial oepration
some databases do this

won’t go into detail in this class
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revokable locks?
try {

AcquireLock();
use shared data

} catch (LockRevokedException le) {
undo operation hopefully?

} finally {
ReleaseLock();

}
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deadlock prevention techniques
infinite resources

or at least enough that never run out no mutual exclusion

no shared resources no mutual exclusion

no waiting
“busy signal” — abort and (maybe) retry
revoke/preempt resources

no hold and wait/
preemption

acquire resources in consistent order no circular wait

request all resources at once no hold and wait

memory allocation: malloc() fails rather than waiting (no deadlock)
locks: pthread_mutex_trylock fails rather than waiting
… requires some way to undo partial changes to avoid errors

common approach for databases
…
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abort and retry limits?
abort-and-retry

how many times will you retry?
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moving two files: abort-and-retry
struct Dir {
mutex_t lock; map<string, DirEntry> entries;

};
void MoveFile(Dir *from_dir, Dir *to_dir, string filename) {
while (true) {
mutex_lock(&from_dir−>lock);
if (mutex_trylock(&to_dir−>lock) == LOCKED) break;
mutex_unlock(&from_dir−>lock);

}

to_dir−>entries[filename] = from_dir−>entries[filename];
from_dir−>entries.erase(filename);

mutex_unlock(&to_dir−>lock);
mutex_unlock(&from_dir−>lock);

}

Thread 1: MoveFile(A, B, "foo")
Thread 2: MoveFile(B, A, "bar")
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moving two files: lots of bad luck?
Thread 1 Thread 2

MoveFile(A, B, "foo") MoveFile(B, A, "bar")
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
lock(&A->lock) → LOCKED

lock(&B->lock) → LOCKED
trylock(&B->lock) → FAILED

trylock(&A->lock) → FAILED
unlock(&A->lock)

unlock(&B->lock)
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livelock
livelock: keep aborting and retrying without end

like deadlock — no one’s making progress
potentially forever

unlike deadlock — threads are not waiting

61



preventing livelock
make schedule random — e.g. random waiting after abort

make threads run one-at-a-time if lots of aborting

other ideas?
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deadlock detection
idea: search for cyclic dependencies
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detecting deadlocks on locks
let’s say I want to detect deadlocks that only involve mutexes

goal: help programmers debug deadlocks

…by modifying my threading library:
struct Thread {

... /* stuff for implementing thread */
/* what extra fields go here? */

};

struct Mutex {
... /* stuff for implementing mutex */
/* what extra fields go here? */

};
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deadlock detection
idea: search for cyclic dependencies

need:
list of all contended resources
what thread is waiting for what?
what thread ‘owns’ what?
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aside: divisible resources
deadlock is possible with divislbe resources like memory,…

example: suppose 6MB of RAM for threads total:
thread 1 has 2MB allocated, waiting for 2MB
thread 2 has 2MB allocated, waiting for 2MB
thread 3 has 1MB allocated, waiting for keypress

cycle: thread 1 waiting on memory owned by thread 2?

not a deadlock — thread 3 can still finish
and after it does, thread 1 or 2 can finish

…but would be deadlock
…if thread 3 waiting lock held by thread 1
…with 5MB of RAM
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divisible resources: not deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

not deadlock:
thread 3 finishes
then thread 1 can get memory
then thread 1 finishes
then thread 2 can get resources
then thread 2 can finish
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divisible resources: is deadlock

memory in
6 (1MB) units

thread 1 thread 2

thread 3

waiting for
2MB

owns

owns

lock

deadlock:
thread 3 can’t finish
until thread 1 releases lock, but
thread 1 can’t finish
until thread 3 releases memory
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divisible resources: is deadlock

memory in
5 (1MB) units

thread 1 thread 2

thread 3

owns

waiting for
2MB

owns

owns

reducing memory: deadlock:
even after thread 3 finishes
no way for thread 1+2
to get what they want
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deadlock detection with divisibe resources
can’t rely on cycles in graphs in this case

alternate algorithm exists
similar technique to how we showed no deadlock

high-level intuition: simulate what could happen
find threads that could finish based on resources available now

full details: look up Baker’s algorithm
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dining philosophers

five philosophers either think or eat
to eat, grab chopsticks on either side

everyone eats at the same time?
grab left chopstick, then…
everyone eats at the same time?
grab left chopstick, then
try to grab right chopstick, …
we’re at an impasse
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skipping the guard page
void example() {

int array[2000];
array[0] = 1000;
...

}

example:
subl $8024, %esp // allocate 8024 bytes on stack
movl $1000, 12(%esp) // write near bottom of allocation

// goes beyond guard page
// since not all of array init'd

....
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create new page table (kernel mappings)
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;

if((pgdir = (pde_t*)kalloc()) == 0)
return 0;

memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");

for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k−>virt, k−>phys_end − k−>phys_start,

(uint)k−>phys_start, k−>perm) < 0) {
freevm(pgdir);
return 0;

}
return pgdir;

}

allocate first-level page table
(“page directory”)

initialize to 0 — every page invaliditerate through list of kernel-space mappings
for everything above address 0x8000 0000
(hard-coded table including flag bits, etc.
because some addresses need different flags
and not all physical addresses are usable)

on failure (no space for new second-level page tales)
free everything
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reading executables (headers)
xv6 executables contain list of sections to load, represented by:
struct proghdr {
uint type; /* <-- debugging-only or not? */
uint off; /* <-- location in file */
uint vaddr; /* <-- location in memory */
uint paddr; /* <-- confusing ignored field */
uint filesz; /* <-- amount to load */
uint memsz; /* <-- amount to allocate */
uint flags; /* <-- readable/writeable (ignored) */
uint align;

};
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goto bad;
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sz — top of heap of new program
name of the field in struct proc
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loading user pages from executable
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
...
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)

panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz − i < PGSIZE)

n = sz − i;
else

n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)

return −1;
}
return 0;

}

get page table entry being loaded
already allocated earlier
look up address to load into

get physical address from page table entry
convert back to (kernel) virtual address
for read from disk

exercise: why don’t we just use addr directly?
(instead of turning it into a physical address,
then into a virtual address again)

copy from file (represented by struct inode) into memory
P2V(pa) — mapping of physical addresss in kernel memory
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