
1



last time
xv6 memory layout

kernel gets top half of virtual addresses
1:1 mapping (for convenience) to physical addresses

x86-32 page table format
top 20-bits of physical address: physical page number
top 20-bits of page table entry: physical page number
trick: addr | flags = page table entry

walkpgdir: retrieve page table entry for virtual address

mappages: set range of page table entries

2



xv6 page table-related functions
kalloc/kfree — allocate physical page, return kernel address
walkpgdir — get pointer to second-level page table entry

…to check it/make it valid/invalid/point somewhere/etc.

mappages — set range of page table entries
implementation: loop using walkpgdir

allockvm — create new set of page tables, set kernel (high) part
entries for 0x8000 0000 and up set
allocate new first-level table plus several second-level tables

allocuvm — allocate new user memory
setup user-accessible memory
allocate new second-level tables as needed

deallocuvm — deallocate user memory
3



xv6 page table-related functions
kalloc/kfree — allocate physical page, return kernel address
walkpgdir — get pointer to second-level page table entry

…to check it/make it valid/invalid/point somewhere/etc.

mappages — set range of page table entries
implementation: loop using walkpgdir

allockvm — create new set of page tables, set kernel (high) part
entries for 0x8000 0000 and up set
allocate new first-level table plus several second-level tables

allocuvm — allocate new user memory
setup user-accessible memory
allocate new second-level tables as needed

deallocuvm — deallocate user memory
4



xv6 page table-related functions
kalloc/kfree — allocate physical page, return kernel address
walkpgdir — get pointer to second-level page table entry

…to check it/make it valid/invalid/point somewhere/etc.

mappages — set range of page table entries
implementation: loop using walkpgdir

allockvm — create new set of page tables, set kernel (high) part
entries for 0x8000 0000 and up set
allocate new first-level table plus several second-level tables

allocuvm — allocate new user memory
setup user-accessible memory
allocate new second-level tables as needed

deallocuvm — deallocate user memory
5



allocating user pages
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
...
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){

cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;

}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){

cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;

}
}

allocate a new, zero pageadd page to second-level page tablethis function used for initial allocation
plus expanding heap on request

6



allocating user pages
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
...
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){

cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;

}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){

cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;

}
}

allocate a new, zero page

add page to second-level page tablethis function used for initial allocation
plus expanding heap on request

6



allocating user pages
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
...
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){

cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;

}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){

cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;

}
}

allocate a new, zero page

add page to second-level page table

this function used for initial allocation
plus expanding heap on request

6



allocating user pages
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
...
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){

cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;

}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){

cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;

}
}

allocate a new, zero pageadd page to second-level page table

this function used for initial allocation
plus expanding heap on request

6



xv6 page table-related functions
kalloc/kfree — allocate physical page, return kernel address
walkpgdir — get pointer to second-level page table entry

…to check it/make it valid/invalid/point somewhere/etc.

mappages — set range of page table entries
implementation: loop using walkpgdir

allockvm — create new set of page tables, set kernel (high) part
entries for 0x8000 0000 and up set
allocate new first-level table plus several second-level tables

allocuvm — allocate new user memory
setup user-accessible memory
allocate new second-level tables as needed

deallocuvm — deallocate user memory
7



kalloc/kfree
kalloc/kfree — xv6’s physical memory allocator

allocates/deallocates whole pages only

keep linked list of free pages
list nodes — stored in corresponding free page itself
kalloc — return first page in list
kfree — add page to list

linked list created at boot

usuable memory fixed size (224MB)
determined by PHYSTOP in memlayout.h

8



xv6 program memory

0

KERNBASE

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument 0

address of argument N
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

invalid

initial stack pointer

myproc()->sz

← adjusted by sbrk() system call

9



xv6 program memory

0

KERNBASE

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument 0

address of argument N
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

invalid

initial stack pointer

myproc()->sz

← adjusted by sbrk() system call

10



xv6 program memory

0

KERNBASE

text

data

stack

heap

PAGESIZE

argument 0

argument N
0

address of argument 0

address of argument N
address of address of
 argument 0

0xFFFFFFF

(empty)

argc

...

...

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

guard page

invalid

initial stack pointer

myproc()->sz

← adjusted by sbrk() system call

10



xv6 heap allocation
xv6: every process has a heap at the top of its address space

yes, this is unlike Linux where heap is below stack

tracked in struct proc with sz
= last valid address in process

position changed via sbrk(amount) system call
sets sz += amount
same call exists in Linux, etc. — but also others

11



sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heapsbrk(N): grow heap by N (shrink if negative)returns old top of heap (or -1 on out-of-memory)

12



sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heap

sbrk(N): grow heap by N (shrink if negative)returns old top of heap (or -1 on out-of-memory)

12



sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heap

sbrk(N): grow heap by N (shrink if negative)

returns old top of heap (or -1 on out-of-memory)

12



sbrk
sys_sbrk()
{
if(argint(0, &n) < 0)
return −1;

addr = myproc()−>sz;
if(growproc(n) < 0)
return −1;

return addr;
}

sz: current top of heapsbrk(N): grow heap by N (shrink if negative)

returns old top of heap (or -1 on out-of-memory)

12



growproc
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();

sz = curproc−>sz;
if(n > 0){
if((sz = allocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
} else if(n < 0){
if((sz = deallocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
}
curproc−>sz = sz;
switchuvm(curproc);
return 0;

}

allocuvm — same function used to allocate initial space
maps pages for addresses sz to sz + n
calls kalloc to get each page

13



growproc
growproc(int n)
{
uint sz;
struct proc *curproc = myproc();

sz = curproc−>sz;
if(n > 0){
if((sz = allocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
} else if(n < 0){
if((sz = deallocuvm(curproc−>pgdir, sz, sz + n)) == 0)

return −1;
}
curproc−>sz = sz;
switchuvm(curproc);
return 0;

}

allocuvm — same function used to allocate initial space
maps pages for addresses sz to sz + n
calls kalloc to get each page

13



xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function

/* in some user program: */
*((int*) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

14



xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function
/* in some user program: */
*((int*) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

14



xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function
/* in some user program: */
*((int*) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

14



xv6 page faults (now)
accessing page marked invalid (not-present) — triggers page fault

xv6 now: default case in trap() function
/* in some user program: */
*((int*) 0x800444) = 1;
...
/* in trap() in trap.c: */

cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()−>pid, myproc()−>name, tf−>trapno,
tf−>err, cpuid(), tf−>eip, rcr2());

myproc()−>killed = 1;

pid 4 processname: trap 14 err 6 on cpu 0 eip 0x1a addr 0x800444--kill proc

trap 14 = T_PGFLT
special register CR2 contains faulting address

14



xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okayif so, setup the page table so it works next time
that is, immediately after returning from fault

15



xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okayif so, setup the page table so it works next time
that is, immediately after returning from fault

15



xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okay

if so, setup the page table so it works next time
that is, immediately after returning from fault

15



xv6: if one handled page faults
alternative to crashing: update the page table and return

returning from page fault handler normally retries failing instruction

“just in time” update of the process’s memory
example: don’t actually allocate memory until it’s needed

pseudocode for xv6 implementation (for trap())
if (tf−>trapno == T_PGFLT) {

void *address = (void *) rcr2();
if (is_address_okay(myproc(), address)) {

setup_page_table_entry_for(myproc(), address);
// return from fault, retry access

} else {
// actual segfault, kill process
cprintf("...");
myproc()−>killed = 1;

}
}

check process control block to see if access okay

if so, setup the page table so it works next time
that is, immediately after returning from fault

15



page table base register / TLBs
so far: just change page table entries

two missing tasks:

changing page table base register:
xv6: lcr3 — done as part of process context switch (switchuvm)

resetting processor’s page table entry cache when page table entries
change

page table entry cache called the ‘TLB’ (translation lookaside buffer)
x86-32: reloading page table base register
processor relies on OS to know when cached PTEs change

16



page fault tricks
OS can do all sorts of ‘tricks’ with page tables

key idea: what processes think they have in memory != their actual
memory

OS fixes disagreement from page fault handler

17



space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

18



space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

18



space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

18



allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physical
page

… … …
0x7FFFB 0 ---
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

19



allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physical
page

… … …
0x7FFFB 0 ---
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

19



allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physical
page

… … …
0x7FFFB 1 0x200D8
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

19



space on demand really
common for OSes to allocate a lot space on demand

sometimes new heap allocations
sometimes global variables that are initially zero

benefit: malloc/new and starting processes is faster

also, similar strategy used to load programs on demand
(more on this later)

future assigment: add allocate heap on demand in xv6

20



exercise
void foo() {

char array[1024 * 128];
for (int i = 0; i < 1024 * 128; i += 1024 * 16) {

array[i] = 100;
}

}
4096-byte pages, stack allocated on demand, compiler optimizations don’t omit the
stores to or allocation of array, the compiler doesn’t initialize array, and the
stack pointer is initially a multiple of 4096.
How much physical memory is allocated for array?
A. 16 bytes D. 4096 bytes (4 · 1024) G. 131072 bytes (128 · 1024)
B. 64 bytes E. 16384 bytes (16 · 1024) H. depends on cache block size
C. 128 bytes F. 32768 bytes (32 · 1024) I. something else?

21



fast copies
recall : fork()

creates a copy of an entire program!

(usually, the copy then calls execve — replaces itself with another
program)

how isn’t this really slow?

22



do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only
can’t be shared?

23



do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants
shared as read-only

can’t be shared?

23



do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only

can’t be shared?

23



trick for extra sharing
sharing writeable data is fine — until either process modifies the
copy

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

24



copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 1 0x12345
0x00602 1 1 0x12347
0x00603 1 1 0x12340
0x00604 1 1 0x200DF
0x00605 1 1 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

25



copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

25



copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

25



copy-on-write and page tables
VPN valid? write?physical

page
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physical
page

… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 1 0x300FD
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

25



exercise
Process with 4KB pages has this memory layout:
addresses use
0x0000-0x0FFF inaccessible
0x1000-0x2FFF code (read-only)
0x3000-0x3FFF global variables (read/write)
0x4000-0x5FFF heap (read/write)
0x6000-0xEFFF inaccessible
0xF000-0xFFFF stack (read/write)

Process calls fork(), then child overwrites a 128-byte heap array and
modifies an 8-byte variable on the stack.

After this, on a system with copy-on-write, how many physical pages
must be allocated so both child+parent processes can read any
accessible memory without a page fault?

26



xv6: adding space on demand
struct proc {
uint sz; // Size of process memory (bytes)
...

};

xv6 tracks “end of heap” (now just for sbrk())

adding allocate on demand logic for the heap:

on sbrk(): don’t change page table right away

on page fault
case 1: if address ≥ sz: out of bounds: kill process
case 2: otherwise, allocate page containing address, return from trap

27



versus more complicated OSes
typical desktop/server:
range of valid addresses is not just 0 to maximum

need some more complicated data structure to represent

28



copy-on write cases
trying to write forbidden page (e.g. kernel memory)

kill program instead of making it writable

fault from trying to write read-only page:

case 1: multiple process’s page table entries refer to it
copy the page
replace read-only page table entry to point to copy

case 2: only one page table entry refers to it
make it writeable

29



mmap
Linux/Unix has a function to “map” a file to memory
int file = open("somefile.dat", O_RDWR);

// data is region of memory that represents file
char *data = mmap(..., file, 0);

// read byte 6 (zero-indexed) from somefile.dat
char seventh_char = data[6];

// modifies byte 100 of somefile.dat
data[100] = 'x';

// can continue to use 'data' like an array

30



mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

31



mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

31



mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

31



mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

32



mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

32



mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

32



mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

32



mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

32



mmap options (3)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file

…or’d with optional additonal flags
Linux: MAP_ANONYMOUS — ignore fd, allocate empty space

trick: Linux tracks process’s memory as list of mmap’s
…‘normal’ memory heap, just special case w/o file

and more (see manual page)
33



mmap options (4)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

addr, suggestion about where to put mapping (may be ignored)
not mandatory unless MAP_FIXED is used (which is rare)
can pass NULL — “choose for me”
address chosen will be returned
MAP_FAILED (constant) on failure

read()/write()/etc. use same physical memory
that’s referenced by process’s page table

…and OS must eventually modify disk with changes

read()/write()/etc. use same physical memory
that’s referenced by process’s page table

…and OS must eventually modify disk with changes

34



backup slides

36



Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

37



Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

38



Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

39



Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

40



Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

41



sketch: implementing mmap
access mapped file for first time, read from disk

(like swapping when memory was swapped out)

write “mapped” memory, write to disk eventually
need to detect whether writes happened
usually hardware support: dirty bit

extra detail: other processes should see changes
all accesses to file use same physical memory
how? OS tracks copies of files in memory

42



xv6: setting process page tables (exec())
exec step 1: create new page table with kernel mappings

done in setupkvm(), which calls mappages()

exec step 2a: allocate memory for executable pages
allocuvm() in loop
new physical pages chosen by kalloc()

exec step 2b: load from executable file
copying from executable file implemented by loaduvm()

exec step 3: allocate pages for heap, stack (allocuvm() calls)

43



xv6: setting process page tables (exec())
exec step 1: create new page table with kernel mappings

done in setupkvm(), which calls mappages()

exec step 2a: allocate memory for executable pages
allocuvm() in loop
new physical pages chosen by kalloc()

exec step 2b: load from executable file
copying from executable file implemented by loaduvm()

exec step 3: allocate pages for heap, stack (allocuvm() calls)

44



minor and major faults
minor page fault

page is already in memory (“page cache”)
just fill in page table entry

major page fault
page not already in memory (“page cache”)
need to allocate space
possibly need to read data from disk/etc.

45



Linux: reporting minor/major faults
$ /usr/bin/time --verbose some-command

Command being timed: "some-command"
User time (seconds): 18.15
System time (seconds): 0.35
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:19.57

...
Maximum resident set size (kbytes): 749820
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 230166
Voluntary context switches: 1423
Involuntary context switches: 53
Swaps: 0

...
Exit status: 0

46



swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

47



swapping
historical major use of virtual memory is supporting “swapping”

using disk (or SSD, …) as the next level of the memory hierarchy

process is allocated space on disk/SSD

memory is a cache for disk/SSD
only need keep ‘currently active’ pages in physical memory

swapping ≈ mmap with “default” files to use

47



HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

48



HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

48



HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

48


	last time
	xv6 setup
	allockvm
	allocuvm
	allocating pages? (kalloc/kfree)
	xv6 heap allocation
	page faults

	missing pieces: updating TLBs / base register
	page table tricks
	what they are
	example: allocate on demand
	space on demand for heap/globals/...
	exercise (space on demand)

	copy-on-write
	exercise (copy on write)

	space on demand: adding to xv6
	copy-on-write: adding to xv6

	mmap
	mmap interface
	Linux: /proc/PID/maps

	backup slides
	Linux data structures
	extra on mmap
	setting up process page tables
	major/minor faults

	generalizing mmap: swapping

