
mmap / page cache

1

last time (1)
kalloc/kfree: linked list of available pages

allocuvm: creating memory for program

handling page faults without crashing
don’t setup whole page table in advance
on page fault: check if OS told program memory was okay
if so, update page table for that memory

allocate-on-demand
record somewhere what memory should be allocated
only actually allocate it when the program tries to access it

2

last time (2)
copy-on-write

on fork: don’t copy pages; make them read-only instead
record somewhere what memory should be read-only
when process tries to access read-only page that “should be” writeable,
make a copy

mmap: making files appear as pages
Linux: treats proecss memory as list of mapped files regions

special case: region can be mapped to ‘anonymous’ file
MAP_SHARED: modifications to memory modify file!
MAP_PRIVATE: modifications to memory make private copy

3

mmap
Linux/Unix has a function to “map” a file to memory
int file = open("somefile.dat", O_RDWR);

// data is region of memory that represents file
char *data = mmap(..., file, 0);

// read byte 6 (zero-indexed) from somefile.dat
char seventh_char = data[6];

// modifies byte 100 of somefile.dat
data[100] = 'x';

// can continue to use 'data' like an array

4

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

5

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

5

mmap options (1)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

length bytes from open file fd starting at byte offset
(Linux extension: can omit fd with special value of flags)

protection flags prot, bitwise or together 1 or more of:
PROT_READ
PROT_WRITE
PROT_EXEC
PROT_NONE (for forcing segfaults)

5

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

6

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

6

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

6

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

6

mmap options (2)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:

MAP_SHARED — changing memory changes file and vice-versa
multiple processes mmap same file: get same physical pages
read()/write() must use same physical pages
changes to memory (if writable) must be sent to disk eventually

MAP_PRIVATE — make a copy of data in file
changes to memory do not change file
almost as if copied during mmap call
but probably actually copied using copy-on-write

6

mmap options (3)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

flags, choose one of:
MAP_SHARED — changing memory changes file and vice-versa
MAP_PRIVATE — make a copy of data in file

…or’d with optional additonal flags
Linux: MAP_ANONYMOUS — ignore fd, allocate empty space

trick: Linux tracks process’s memory as list of mmap’s
…‘normal’ memory heap, just special case w/o file

and more (see manual page)
7

mmap options (4)
#include <sys/mman.h>
void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

addr, suggestion about where to put mapping (may be ignored)
not mandatory unless MAP_FIXED is used (which is rare)
can pass NULL — “choose for me”
address chosen will be returned
MAP_FAILED (constant) on failure

read()/write()/etc. use same physical memory
that’s referenced by process’s page table

…and OS must eventually modify disk with changes

read()/write()/etc. use same physical memory
that’s referenced by process’s page table

…and OS must eventually modify disk with changes

8

mmap exercise
suppose hello.txt initially contains “foo”:
int fd = open("hello.txt", O_RDWR);
char *p1 = mmap(NULL, 3 /* size */,

PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

char *p2 = mmap(NULL, 3, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
char *p3 = mmap(NULL, 3, PROT_READ, MAP_SHARED, fd, 0);
p2[2] = 'b';
p1[2] = 'x'; p1[1] = 'i';
char buffer[3];
read(fd, buffer, 3);
printf("%3s/%3s/%3s\n", buffer, p2, p3);

What is the output? (Assume no failures.)
A. foo/fob/foo D. fix/fob/fix
B. fix/fob/foo E. fix/fob/fob
C. fix/fix/fix F. something else

9

mmap exercise
suppose hello.txt initially contains “foo”:
int fd = open("hello.txt", O_RDWR);
char *p1 = mmap(NULL, 3 /* size */,

PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

char *p2 = mmap(NULL, 3, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
char *p3 = mmap(NULL, 3, PROT_READ, MAP_SHARED, fd, 0);
p2[2] = 'b';
p1[2] = 'x'; p1[1] = 'i';
char buffer[3];
read(fd, buffer, 3);
printf("%3s/%3s/%3s\n", buffer, p2, p3);

What is the output? (Assume no failures.)
A. foo/fob/foo D. fix/fob/fix
B. fix/fob/foo E. fix/fob/fob
C. fix/fix/fix F. something else

10

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000

read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000

read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/cat

device major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/cat

device major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

12

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);

as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

13

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)

read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)

read from second page?
page fault

PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault

PF handler: find cached page
update page table, retry

read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry

read from first page?
page fault

PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault

PF handler: no cached page
first read in page

PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page

PF handler: read in page
now point to page

14

mapped pages (read-only)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

initially — all invalid?
(could also prefill entries…)
read from second page?
page fault
PF handler: find cached page
update page table, retry
read from first page?
page fault
PF handler: no cached page
first read in page
PF handler: read in page
now point to page

14

shared mmap
int fd = open("/tmp/somefile.dat", O_RDWR);
mmap(0, 64 * 1024, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

from /proc/PID/maps for this program:

7f93ad877000-7f93ad887000 rw-s 00000000 08:01 1839758 /tmp/somefile.dat

15

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory
also used by read()/write() syscalls

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory
also used by read()/write() syscalls

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory
also used by read()/write() syscalls

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

mapped pages (read/write, shared)
virtual pages mapped to file

page table (part)

file data, cached in memory
also used by read()/write() syscalls

file data on disk/SSD

write to page?
update cached file data
data on disk out of date

eventually free memory…
write update to disk

16

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

17

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before

write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page tablecopies of file data, modified

18

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before

write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page tablecopies of file data, modified

18

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before
write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page table

copies of file data, modified

18

mapped pages (copy-on-write)
virtual pages mapped to file

page table (part)

file data, cached in memory

file data on disk/SSD

reads like before
write to second page?
protection fault
page table entry says read-only

fault handler:
make copy, update page table

copies of file data, modified

18

maps counting
4KB (0x1000 byte) pages

virtual 0x10000-0x1FFFF (64KB) → “foo.dat” bytes
0-0x0FFFF

map setup private (copy-on-write)
bytes 0-0x3FFF and 0x5000-0x6FFF cached in memory

program reads addresses 0x13800–0x15800

then, program overwrites addresses 0x14800–0x15100

assume: program page table filled in on demand only
smarter OS would probably proactively fill in multiple pages

question: how much page/protection faults?

19

maps counting
4KB (0x1000 byte) pages

virtual 0x10000-0x1FFFF (64KB) → “foo.dat” bytes
0-0x0FFFF

map setup private (copy-on-write)
bytes 0-0x3FFF and 0x5000-0x6FFF cached in memory

program reads addresses 0x13800–0x15800

then, program overwrites addresses 0x14800–0x15100

assume: program page table filled in on demand only
smarter OS would probably proactively fill in multiple pages

question: how much page/protection faults?
19

maps counting soln
virtual 0x10000-0x1FFFF (64KB) → “foo.dat” bytes
0-0x0FFFF

map setup private (copy-on-write)
bytes 0-0x3FFF and 0x5000-0x6FFF cached in memory

program reads addresses 0x13800–0x15800
then, program overwrites addresses 0x14800–0x15100
assume: program page table filled in on demand only

1: set PTE for offset 0x3000-0x3FFF (use cached version)
2,3: read from disk + set PTE for 0x4000-0x4FFF; set PTE for
0x5000-0x5FFF
4,5: copy for 0x4000-0x4FFF, 0x5000-0x5FFF 20

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

21

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);

as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

22

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

23

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

23

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

23

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

23

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memorydata in memory

23

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memory

data in memory

23

mapped pages (no backing file)
virtual pages w/o backing file

page table (part)

data in memory

data on disk (if any)
“swapped out”

access new page
page fault handler
allocates on demand

need more memory?
save page to disk
AKA “swap out”

data in memory

data in memory

23

Linux maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 / b in / cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7 f60c7854000 −7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

at virtual addresses 0x400000–0x40b000read, not write, execute, private
private = copy-on-write (if writeable)

starting at offset 0 of the file /bin/catdevice major number 8
device minor number 1
inode 48328831
more on what this means when we talk about filesystems

heap — no corresponding file
allocated using sbrk()
but can get same effect with mmap() call

read/write, copy-on-write (private) mapping
int fd = open("/bin/cat", O_RDONLY);
mmap(0x60b000, 0x1000, PROT_READ | PROT_WRITE,

MAP_PRIVATE, fd, 0xb000);
(aside: probably used for global variables)

as if:
int fd = open("/bin/cat", O_RDONLY);
mmap(0x400000, 0xb000, PROT_READ | PROT_EXEC,

MAP_PRIVATE, fd, 0x0);
as if:
mmap(..., 0x5000, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS /* = no file */, ...);

24

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file
need to free up more space?
can move copied data to disk

“swapped out”
modified data
‘swapped out’
modified data

25

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file

need to free up more space?
can move copied data to disk

“swapped out”
modified data
‘swapped out’
modified data

25

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file

need to free up more space?
can move copied data to disk

“swapped out”
modified data

‘swapped out’
modified data

25

swapping with copy-on-write
virtual pages mapped to file

page table (part)

file data, cached in memory

file data
on disk/SSD

copies of file data, modified

free up space by removing
cached copies of file
need to free up more space?
can move copied data to disk

“swapped out”
modified data

‘swapped out’
modified data

25

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

26

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

26

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

26

the page cache
memory is a cache for disk

files and program memory has a place on disk
running low on memory? always have room on disk
assumption: disk space approximately infinite

physical memory pages: disk ‘temporarily’ kept in faster storage
possibly being used by one or more processes?
possibly part of a file on disk being read/written?
possibly both

goal: manage this cache intelligently

26

page cache components [text]
mapping: virtual address or file+offset → physical page

handle cache hits

find backing location based on virtual address/file+offset
handle cache misses

track information about each physical page
handle page allocation
handle cache eviction

27

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

29

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

30

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

31

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

31

virtual addr/file offset to physical page
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)

disk location

page tablefor cache hit on memory access
structure determined by hardware!

OS datastructure

kernel data structure
for cache hit on read/write
(or page fault for mmap’d memory)
multiple designs; one idea: balanced tree

31

mapped pages (read/write, shared)

file data, cached in memory

file data on disk/SSD

32

page replacement
step 1: evict a page to free a physical page

case 1: there’s an unused page, just use that (easy)

case 2: need to remove whatever what’s in that page (more work)

step 2: load new, more important in its place

needs some way of knowing location of data

34

page replacement
step 1: evict a page to free a physical page

case 1: there’s an unused page, just use that (easy)

case 2: need to remove whatever what’s in that page (more work)

step 2: load new, more important in its place

needs some way of knowing location of data

35

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

36

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

37

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

37

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

37

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

38

Linux maps: list of maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 /bin/cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

PCB contains list of struct vm_area_struct with:
(shown in this output):

virtual address start, end
permissions
offset in backing file (if any)
pointer to backing file (if any)

(not shown):
info about sharing of non-file data (e.g. heap after fork) …

39

page replacement
step 1: evict a page to free a physical page

case 1: there’s an unused page, just use that (easy)

case 2: need to remove whatever what’s in that page (more work)

step 2: load new, more important in its place

needs some way of knowing location of data

40

evicting a page
remove victim page from page table, etc.

every page table it is referenced by
every list of file pages
…

if needed, save victim page to disk

going to require:

way to find page tables, etc. using page

way to detect whether it needs to be saved to disk

41

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

42

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it

need reverse mappings to find
pointers to remove

42

tracking physical pages: finding mappings
want to evict a page? remove from page tables, etc.

need to track where every page is used!

common solution: structure for every physical page with info about
every cached file/page table using page

43

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk

allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

44

page cache components
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

OS datastructure

page table

OS datastructure

OS datastructure

OS datastructure

page usage
(recently used? etc.)

cache hit
OS lookup for read()/write()
CPU lookup in page table

cache miss: OS looks up location on disk
allocating a physical page
choose page that’s not being used much

might need to evict used page
requires removing pointers to it
need reverse mappings to find
pointers to remove

45

page replacement goals
hit rate: minimize number of misses

throughput: minimize overhead/maximize performance

fairness: every process/user gets its ‘share’ of memory

will start with optimizing hit rate

46

max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

47

max hit rate ≈ max throughput
optimizing hit rate almost optimizes throughput, but…

cache miss costs are variable
creating zero page versus reading data from slow disk?
write back dirty page before reading a new one or not?
reading multiple pages at a time from disk (faster per page read)?
…

47

being proactive?
can avoid misses by “reading ahead”

guess what’s needed — read in ahead of time
wrong guesses can have costs besides more cache misses

can save modified pages to disk in the background

we will get back to this later

for now — only access/evict on demand

48

optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

49

optimizing for hit-rate
assuming:

we only bring in pages on demand (no reading in advance)
we only care about maximizing cache hits

best possible page replacement algorithm: Belady’s MIN

replace the page in memory accessed furthest in the future
(never accessed again = infinitely far in the future)

impossible to implement in practice, but…

49

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

50

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

50

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

50

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

50

Belady’s MIN

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A next accessed in 1 time unit
B next accessed in 3 time units
C next accessed in 4 time units
choose to replace C

A next accessed in ∞ time units
B next accessed in 1 time units
D next accessed in ∞ time units
choose to replace A or D (equally good)

50

Belady’s MIN exercise

A B C D B B A C A D C

1 A
2 B
3 C

phys.
page#

referenced (virtual) pages:
time

exercise: What does this access to D replace? (A, B, or C?)

51

practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

52

practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

52

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

53

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

53

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

53

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

53

least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

53

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

54

least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

54

backup slides

55

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

56

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

57

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

58

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

59

Linux: forward mapping
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

used to fill
(for mmap)

read()/write()

60

virtual address/file offset → location on disk
virtual address
(used by program)

file + offset
(for read()/write())

physical page
(if cached)disk location

page table

OS datastructureOS datastructure

OS datastructure

based on filesystem — later topic

(Linux)
part of file: track mmap ‘regions’
swapped out non-file: trick: unused PTEs

61

Linux: tracking swapped out pages
need to lookup location on disk

potentially one location for every virtual page

trick: store location in “ignored” part of page table entry
instead of physical page #, permission bits, etc., store offset on disk

62

Linux: reverse mapping (file pages)
process control block (task_struct)

mmap region info
(vm_area_struct)

open file info
(struct file)

file on disk info
(struct inode)

cached physical pages for file
(address_space)

page table

per-physical page info
(struct page) page number

given page number
find references to that page
(e.g. to remove/change them)

63

sketch: implementing mmap
access mapped file for first time, read from disk

(like swapping when memory was swapped out)

write “mapped” memory, write to disk eventually
need to detect whether writes happened
usually hardware support: dirty bit

extra detail: other processes should see changes
all accesses to file use same physical memory
how? OS tracks copies of files in memory

64

xv6: setting process page tables (exec())
exec step 1: create new page table with kernel mappings

done in setupkvm(), which calls mappages()

exec step 2a: allocate memory for executable pages
allocuvm() in loop
new physical pages chosen by kalloc()

exec step 2b: load from executable file
copying from executable file implemented by loaduvm()

exec step 3: allocate pages for heap, stack (allocuvm() calls)

65

tracking physical pages: finding free pages
Linux has list of “least recently used” pages:
struct page {

...
struct list_head lru; /* list_head ~ next/prev pointer */
...

};

how we’re going to find a page to allocate
(and evict from something else)

later — what this list actually looks like (how many lists, …)

66

predicting the future?
can’t really…

look for common patterns

67

working set intuition
say we’re executing a loop

what memory does this require?

code for the loop

code for functions called in the loop
and functions they call

data structures used by the loop and functions called in it, etc.

only uses a subset of the program’s memory

68

the working set model
one common pattern: working sets

at any time, program is using a subset of its memory

…called its working set

rest of memory is inactive

…until program switches to different working set

69

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

70

working sets and running many programs
give each program its working set

…and, to run as much as possible, not much more
inactive — won’t be used

replacement policy: identify working sets ≈ recently used data

replace anything that’s not in in it

70

cache size versus miss rate

Bienia et al, “The PARSEC Benchmark Suite: Characterization and Architectural Implications” 71

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

72

estimating working sets
working set ≈ what’s been used recently

except when program switching working sets

so, what a program recently used ≈ working set

can use this idea to estimate working set (from list of memory
accesses)

72

second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

73

second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

73

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

74

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

74

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

74

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

74

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

74

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

74

approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

74

CLOCK-Pro: special casing for one-use pages
by default, Linux tries to handle scanning of files

one read of file data — e.g. play a video, load file into memory

basic idea: delay considering pages active until second access
second access = second scan of accessed bits/etc.

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

75

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?

need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

76

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

76

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

76

readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?
if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

76

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

77

exercise: which of these is LRU bad for?
code in a text editor for handling out-of-disk-space errors

initial values of the shell’s global variales

on a desktop, long movies that are too big to fit in memory and
played from beginning to end

on web server, long movies that are too big to fit in memory and
frequently downloaded by clients

files that are parsed when loaded and overwritten when saved

on web server, frequently requested HTML files

78

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

79

problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

79

solution for LRU being bad?
one idea that Linux uses:

for file data, use different replacement policy

“CLOCK-PRO”

tries to avoid keeping around file data accessed only once

80

being proactive
previous assumption: load on demand

why is something loaded?
page fault
maybe because application starts

can we do better?

81

readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

82

readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

82

readahead implementation ideas?
which of these is probably best?

(a) when there’s a page fault requring reading page X of a file from
disk, read pages X and X + 1
(b) when there’s a page fault requring reading page X > 200 of a
file from disk, read the rest of the file
(c) when page fault occurs for page X of a file, read pages X
through X + 200 and proactively add all to the current program’s
page table
(d) when page fault occurs for page X of a file, read pages X
through X + 200 but don’t place pages X + 1 through X + 200 in
the page table yet

83

	mmap
	mmap interface
	exercise
	Linux: /proc/PID/maps
	read-only mmaps
	shared mmaps
	copy-on-write mmaps
	exericse

	unbacked maps and swapping (simple)
	copy-on-write maps and swapping

	page cache
	memory = cache for disk
	page cache components
	forward mappings: cache hits
	cache misses: high-level
	forward mapping for cache misses
	reverse mapping and supporting eviction
	choosing pages to evict?

	page replacement policies
	page replacement policy goals
	Belady's MIN
	LRU

	backup slides
	Linux data structures
	trick for swapped pages
	reverse mapping detail
	extra on mmap
	setting up process page tables
	Linux free list
	the working set model
	approximating LRU: SEQ
	read once patterns
	readahead heuristics, generally

	non-LRU patterns
	when is LRU bad?
	readahead
	exercise?

