
1



last time
mmap, shared:

load from file on demand
write out to file when freeing up space

mmap, private
load from file on demand
make copies on write

swapping/unbacked mappings
make up location on disk to save data

page cache:
virtual pages are really on disk (file, or temp location for swapping)
physical pages “temporarily” cache copies
challenge: cache managements

Belady’s MIN: minimum number of page replacements
access furthest in the future 2



practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

3



practically optimizing for hit-rate
recall?: locality assumption

temporal locality: things accessed now will be accessed again soon

(for now: not concerned about spatial locality)

more possible policies: least recently used or least frequently used

3



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

4



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

4



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

4



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

4



least recently used (the good case)

A B C A B D A D B C B

1 A C
2 B
3 C D

phys.
page#

referenced (virtual) pages:
time

A last accessed 2 time units ago
B last accessed 1 time unit ago
C last accessed 3 time units ago
choose to replace C

A last accessed in 3 time units ago
B last accessed in 1 time unit ago
D last accessed in 2 time units ago
choose to replace A

4



least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

5



least recently used (the worst case)

A B C D A B C D A B C

1 A D C B
2 B A D C
3 C B A

phys.
page#

time

1 A B
2 B C
3 C D

8 replacements with LRU
versus 3 replacements with MIN:

5



least recently used (exercise) [intro]
A B A D C B D B C D A

1
2
3

6



least recently used (exercise)
A B A D C B D B C D A

1 A A A A
2 B B B
3 D

7



pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
probably 100+x slowdown?

11



pure LRU implementation
implementing LRU in software

maintain doubly-linked list of all physical pages

whenever a page is accessed:
remove page from linked list, then
add page to head of list

whenever a page needs to replaced:
remove a page from the tail of the linked list, then
evict that page from all page tables (and anything else)
and use that page for whatever needs to be loaded

need to run code on every access
probably 100+x slowdown?

11



so, what’s practical
probably won’t implement LRU — too slow

what can we practically do?

12



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW (on x86, but not everywhere)

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit instead of accessed/referenced bit

13



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW (on x86, but not everywhere)

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit instead of accessed/referenced bit

13



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW (on x86, but not everywhere)

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit instead of accessed/referenced bit

13



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW (on x86, but not everywhere)

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit instead of accessed/referenced bit

13



tools for tracking accesses
approximating LRU = “was this accessed recently”?

don’t need to detect all accesses, only one recent one
“was this accessed since we started looking a few seconds ago?”

ways to detect accesses AKA references:
mark page invalid, if page fault happens make valid and record
‘accessed/referenced’
‘accessed’ or ‘referenced’ bit set by HW (on x86, but not everywhere)

same idea applies for detecting writes
to know whether replaced page needs to be saved to disk
called “dirty” bit instead of accessed/referenced bit

13



approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

14



approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

14



approximating LRU: second chance
ordered list

of physical pages

‘referenced’ bit set?

“new” pages start at top of list

yes, reset referenced bit
and put back on list

no, evict this page

page made it to the bottom
was it referenced in that time?
yes — give a second chance

page made it to the bottom
was it referenced in that time?
no — good choice to evict

14



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced
place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

15



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced

place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

15



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced

place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

15



second chance example (0)

A B C

1 A
2 B
3 C

page list
last added 3NR 1NR *1R 2NR *2R 3NR *3R

— 2NR 3NR 3NR 1R 1R 2R 2R

end of list 1NR 2NR 2NR 3NR 3NR 1R 1R

place A in physical page 1
accessed right after → becomes referenced
place B in physical page 2
accessed right after → becomes referenced

future slides:
going to skip writing
these intermediate steps
(just for space)

15



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

16



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

16



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

16



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

16



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — useB referenced — flips referenced bit

16



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

16



second chance example (1)

A B C D — — — B

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

place A in page 1
not referenced on return from page fault handler
immediately referenced by program when page fault handler returns

page 2 was at bottom of list
is not referenced
okay to use

page 1 was at bottom of list
reference — give second chance
moves to top of list
clear referenced bit

eventually page 1 gets to bottom of list again
but now not referenced — use

B referenced — flips referenced bit

16



second chance example: exercise (1)
A B C D — — — B A

1 A D
2 B
3 C C

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R

exercise: What does this access to A replace? (D, B, or C?)
what is at end of list after? (PP 1, 2, or 3?)

17



second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

18



second chance example: exercise (2)
A B C D — — — B A — C

1 A D ?
2 B ?
3 C C A ?

page list
last added *1R *2R *3R 1NR 2NR 3NR *1R 1R 2NR *3R

— 3NR 1R 2R 3R 1NR 2NR 3NR 3NR 1R 2NR

end of list 2NR 3NR 1R 2R 3R 1NR 2NR *2R 3NR 1R

exercise: What does this access to C replace? (D, B, or A?)
what is at end of list after? (PP 1, 2, or 3?)

18



second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

20



second chance cons
performs poorly with big memories…

may need to scan through lots of pages to find unaccessed

likely to count accesses from a long time ago

want some variation to tune its sensitivity

one idea: smaller list of pages to scan for accesses

20



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

21



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

21



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

21



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

21



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

21



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

21



approximating LRU: SEQ

active list

inactive list
guess: oldest active page
is really inactive page

inactive page referenced?
not really inactive
move to active list

evict page at bottom of inactive list
know: not referenced ‘recently’

“new” pages start in active list

detecting references?
scan reference bits
or mark invalid + get fault

this is current Linux algorithm for non-file pages
extra details needed: how big is the inactive list?

21



tracking usage: CLOCK (view 1)

page #4: last referenced bits: Y Y Y…
page #5: last referenced bits: N N N…
page #6: last referenced bits: N Y Y…
page #7: last referenced bits: Y N Y…
page #8: last referenced bits: Y Y N…
page #1: last referenced bits: Y Y Y…
page #2: last referenced bits: N N N…
page #3: last referenced bits: Y Y N…

ordered list
of physical pages

periodically:
take page from bottom of list
record current referenced bit
clear reference bit for next pass
add to top of list

22



tracking usage: CLOCK (view 2)

page #1:
last ref. bits: Y Y Y…

page #2:
last ref. bits: N N N…

page #3:
last ref. bits: N Y Y…

page #4:
last ref. bits: Y N Y…

page #5:
last ref. bits: Y Y N…

page #6:
last ref. bits: Y Y Y…

page #7:
last ref. bits: N N N…

page #8:
last ref. bits: Y Y N…

23



problems with LRU
question: when does LRU perform poorly?

only reading things once

repeated scans of large amounts of data

both common access patterns for files

24



exercise: which of these is LRU bad for?
code in a text editor for handling out-of-disk-space errors

initial values of the shell’s global variales

on a desktop, long movies that are too big to fit in memory and
played from beginning to end

on web server, long movies that are too big to fit in memory and
frequently downloaded by clients

files that are parsed when loaded and overwritten when saved

on web server, frequently requested HTML files

25



solution for LRU being bad?
one idea that Linux uses:

for file data, use different replacement policy

tries to avoid keeping around file data accessed only once

26



being proactive
previous assumption: load on demand

why is something loaded?
page fault
maybe because application starts

can we do better?

27



readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

28



readahead
program accesses page 4 of a file, page 5, page 6. What’s next?

page 7 — idea: guess this
on page fault, does it look like contiguous accesses?

called readahead

28



readahead implementation ideas?
which of these is probably best?

(a) when there’s a page fault requring reading page X of a file from
disk, read pages X and X + 1
(b) when there’s a page fault requring reading page X > 200 of a
file from disk, read the rest of the file
(c) when page fault occurs for page X of a file, read pages X
through X + 200 and proactively add all to the current program’s
page table
(d) when page fault occurs for page X of a file, read pages X
through X + 200 but don’t place pages X + 1 through X + 200 in
the page table yet

29



being less lazy elsewhere
showed OS: proactively reading in pages

can also proactively free pages (faster replacement)

and proactively write out pages ‘dirty’ pages
save time writing later
avoid data loss on power failure

30



page cache/replacement summary
program memory + files — swapped to disk, cached in memory

mostly, assume temporal locality
least recently used variants

special cases for non-LRU-friendly patterns (e.g. scans)
maybe more we haven’t discussed?

being proactive (writeback early, readahead, pre-evicted pages)

missing: handling non-miss-rate goals?

31



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

32



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

32



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer

read char
from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

32



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

32



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

32



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

33



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

33



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

33



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

33



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

33



layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

34



backup slides

35



recording accesses
goal: “check is this physical page still being used?”

software support: temporarily mark page table invalid
use resulting page fault to detect “yes”

hardware support: accessed bits in page tables
hardware sets to 1 when accessed

36



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 (never) …
… … …

OS page info
processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault

update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault
update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 0 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time X …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next access

processor does lookup
oops! page fault

update page info +
mark present

37



temporarily invalid PTE (software support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? writable? … PPN
0x00000 0 --- … ---
0x00001 0 --- … ---
… … … … …
0x00123 1 0 … 0x4442
… … … … …

page table for program 1

PPN last known
access?

…

… … …
0x04442 at time Y …
… … …

OS page info

processor does lookup

oops! page fault
update page info +
mark present

processor does lookup
no page fault, not recorded in OS info

OS clears present bit
to check for next accessprocessor does lookup

oops! page fault

update page info +
mark present

37



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1

processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1

OS reads + records +
clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bit usage (hardware support)

mov 0x123456, %ecx
mov 0x123789, %ecx
…
…
mov 0x123300, %ecx

program 1
…
(OS exception’s handler)
…

the kernel

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 1 0 … 0x4442
… … … … … …

page table for program 1

processor does lookup
sets accessed bit to 1
processor does lookup
keeps access bit set to 1 OS reads + records +

clears access bit

processor does lookup
sets accessed bit to 1 (again)

38



accessed bits: multiple processes

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00123 1 0 0 … 0x4442
… … … … … …

page table for program 1

VPN present? accessed? writable? … PPN
0x00000 0 --- --- … ---
0x00001 0 --- --- … ---
… … … … … …
0x00483 1 1 0 … 0x4442
… … … … … …

page table for program 2

OS needs to clear+check
all accessed bits
for the physical page

39



dirty bits
“was this part of the mmap’d file changed?”

“is the old swapped copy still up to date?”

software support: temporarily mark read-only

hardware support: dirty bit set by hardware
same idea as accessed bit, but only changed on writes

40



x86-32 accessed and dirty bit

A: acccessed — processor sets to 1 when PTE used
used = for read or write or execute
likely implementation: part of loading PTE into TLB

D: dirty — processor sets to 1 when PTE is used for write

41



lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

42



lazy replacement?
so far: don’t do anything special until memory is full

only then is there a reason to writeback pages or evict pages

but real OSes are more proactive

42



non-lazy writeback
what happens when a computer loses power

how much data can you lose?

if we never run out of memory…all of it?
no changed data written back

solution: track or scan for dirty pages and writeback

example goals:
lose no more than 90 seconds of data
force writeback at file close
…

43



non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

44



non-lazy eviction
so far — allocating memory involves evicting pages

hopefully pages that haven’t been used a long time anyways

alternative: evict earlier “in the background”
“free”: probably have some idle processor time anyways

allocation = remove already evicted page from linked list
(instead of changing page tables, file cache info, etc.)

44



CLOCK-Pro: special casing for one-use pages
by default, Linux tries to handle scanning of files

one read of file data — e.g. play a video, load file into memory

basic idea: delay considering pages active until second access
second access = second scan of accessed bits/etc.

single scans of file won’t “pollute” cache

without this change: reading large files slows down other programs
recently read part of large file steals space from active programs

45



readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?

need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

46



readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?

takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

46



readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?

if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

46



readahead heuristics
exercise: devise an algorithm to detect to do readahead.

how to detect the reading pattern?
need to record subset of accesses to see sequential pattern
not enough to look at misses!
want to check when readahead pages are used — keep up with program

when to start reads?
takes some time to read in data — well before needed

how much to readahead?
if too much: evict other stuff programs need
if too little: won’t keep up with program
if too little: won’t make efficient use of HDD/SSD/etc.

46


	page replacement
	LRU
	exercise

	implementing pure LRU

	implementing LRU-like page replacement
	tracking accesses
	approximating LRU: second-chance
	example
	exercise

	approximating LRU: SEQ
	approximating LRU: CLOCK

	non-LRU patterns
	when is LRU bad?
	readahead
	exercise?


	being less lazy elsewhere
	page cache/replacement summary
	buffering / everything is a file
	backup slides
	accessed/dirty bit
	faster allocation: dirty writeback and free lists
	read once patterns
	readahead heuristics, generally


