
devices / FAT

1



last time (1)
LRU, and (impractically) implementing it

referenced/accessed and dirty bits

second chance:
ordered list of pages
take from bottom
evict if page never referenced while on list
otherwise return to top, mark unreferenced

SEQ:
“inactive list” of pages that might be unused
only check if pages are referenced while on inactive list
control inactive list size to manage overhead/sensitivity to usage

2



last time (2)
CLOCK: general idea of scanning/clearing referenced bits
periodically

can be seen as generalization of second chance/SEQ
variety of LRU-like policies possible

special cases for scanning patterns
proactively read in next thing that would be scanned
maybe don’t do LRU-like policy (often not reused)

proactive writing back dirty pages, freeing pages

3



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

4



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

4



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer

read char
from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

4



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

4



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read

buffer: keyboard input
waiting for program

read char
from terminal …via buffer read char

from file

read block of data from disk

buffer: recently read
data from disk

…via buffer

4



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

5



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

5



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

5



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

5



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

5



layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

6



ways to talk to I/O devices
user program

read/write/mmap/etc. file interface
regular files

filesystems
device files

device drivers

7



devices as files
talking to device? open/read/write/close

typically similar interface within the kernel

device driver implements the file interface

8



example device files from a Linux desktop
/dev/snd/pcmC0D0p — audio playback

configure, then write audio data

/dev/sda, /dev/sdb — SATA-based SSD and hard drive
usually access via filesystem, but can mmap/read/write directly

/dev/input/event3, /dev/input/event10 — mouse and
keyboard

can read list of keypress/mouse movement/etc. events

/dev/dri/renderD128 — builtin graphics
DRI = direct rendering infrastructure

9



devices: extra operations?
read/write/mmap not enough?

audio output device — set format of audio? headphones plugged in?
terminal — whether to echo back what user types?
CD/DVD — open the disk tray? is a disk present?
…

extra POSIX file descriptor operations:
ioctl (general I/O control) — device driver-specific interface
tcsetattr (for terminal settings)
fcntl
…

also possibly extra device files for same device:
/dev/snd/controlC0 to configure audio settings for
/dev/snd/pcmC0D0p, /dev/snd/pcmC0D10p, …

10



Linux example: file operations
(selected subset — table of pointers to functions)
struct file_operations {

...
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,x

size_t, loff_t *);
...
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
...
int (*mmap) (struct file *, struct vm_area_struct *);
unsigned long mmap_supported_flags;
int (*open) (struct inode *, struct file *);
...
int (*release) (struct inode *, struct file *);
...

};

11



special case: block devices
devices like disks often have a different interface

unlike normal file interface, works in terms of ‘blocks’
block size usually equal to page size

for working with page cache
read/write page at a time

12



Linux example: block device operations
struct block_device_operations {

int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*rw_page)(struct block_device *,

sector_t, struct page *, bool);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
...

};

read/write a page for a sector number (= block number)

13



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

14



device driver flow thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

14



device driver flow thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

14



xv6: device files (1)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

inode = represents file on disk

pointed to by struct file referenced by fd

15



xv6: device files (2)
struct devsw {
int (*read)(struct inode*, char*, int);
int (*write)(struct inode*, char*, int);

};

extern struct devsw devsw[];

array of types of devices
special type of file on disk has index into array

“device number”
created via mknod() system call

similar scheme used on real Unix/Linux
two numbers: major + minor device number

16



xv6: console devsw
code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is the constant 1

consoleread/consolewrite: run when you read/write console

17



xv6: console devsw
code run at boot:
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;

CONSOLE is the constant 1

consoleread/consolewrite: run when you read/write console

17



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

18



xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){

if(myproc()−>killed){
...
return −1;

}
sleep(&input.r, &cons.lock);

}
...

}
release(&cons.lock)
...

}

if at end of buffer
r = reading location, w = writing location

put thread to sleep

19



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

20



xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

}

copy from kernel buffer
to user buffer (passed to read)

21



xv6: console top half (read)
int
consoleread(struct inode *ip, char *dst, int n)
{
...
target = n;
acquire(&cons.lock);
while(n > 0){
...
c = input.buf[input.r++ % INPUT_BUF];
...
*dst++ = c;
−−n;
if (c == '\n')

break;
}
release(&cons.lock)
...
return target − n;

}

copy from kernel buffer
to user buffer (passed to read)

21



xv6: console top half
wait for buffer to fill

no special work to request data — keyboard input always sent

copy from buffer

check if done (newline or enough chars), if not repeat

22



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

23



xv6: console interrupt (one case)
void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: actually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

24



xv6: console interrupt (one case)
void
trap(struct trapframe *tf) {
...
switch(tf−>trapno) {
...

case T_IRQ0 + IRQ_KBD:
kbdintr();
lapcieoi();
break;
...

}
...

}

kbdintr: actually read from keyboard device
lapcieoi: tell CPU “I’m done with this interrupt”

24



device driver flow

thread making read/write/etc. “top half”

get I/O request
read/write/… system call or
page cache miss/eviction…

check if satisfied from buffers
(e.g. previous keypresses to keyboard)

send I/O operation (if needed)
put thread to sleep (if needed)

get interrupt from device

update buffers
wake up thread (if needed)
send more to device (if needed)

store data into result
return (if result complete)

device hardware

trap handler “bottom half”

25



xv6: console interrupt reading
kbdintr fuction actually reads from device

adds data to buffer (if room)

wakes up sleeping thread (if any)

26



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

27



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

27



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses
way to send “please interrupt” signal

component of processor decides when to handle
(deals with ordering, interrupt disabling,

which of several processors handles it, …, etc.)

27



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

27



connecting devices

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller
status
read?
write?…

control registers buffers/queues

external hardware?

0x80004800:
0x80004808:
0x80004810:

…:

control registers have memory addresses
looks like write to memory

actually changes value in device controller

control registers might not really be registers
e.g. maybe writing to write? “control register”

actually just sends the value the external hardware

buffers/queues will also have memory addresses

way to send “please interrupt” signal
component of processor decides when to handle

(deals with ordering, interrupt disabling,
which of several processors handles it, …, etc.)

27



bus adaptors

processor
interrupt
controller

memory bus

other processors… actual memory

other devices
or

other bus adaptors

bus adaptor

other devices

device controller
status
read?
write?…

control registers buffers/queues

external hardware?

different bus

28



devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

29



devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

29



devices as magic memory (1)
devices expose memory locations to read/write

use read/write instructions to manipulate device

example: keyboard controller

read from magic memory location — get last keypress/release

reading location clears buffer for next keypress/release

get interrupt whenever new keypress/release you haven’t read

29



device as magic memory (2)
example: display controller

write to pixels to magic memory location — displayed on screen

other memory locations control format/screen size

example: network interface

write to buffers

write “send now” signal to magic memory location — send data

read from “status” location, buffers to receive

30



what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

31



what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

31



what about caching?
caching “last keypress/release”?

I press ‘h’, OS reads ‘h’, does that get cached?

…I press ‘e’, OS reads what?

solution: OS can mark memory uncachable

x86: bit in page table entry can say “no caching”

31



aside: I/O space
x86 has a “I/O addresses”

like memory addresses, but accessed with different instruction
in and out instructions

historically — and sometimes still: separate I/O bus

more recent processors/devices usually use memory addresses
no need for more instructions, buses
always have layers of bus adaptors to handle compatibility issues
other reasons to have devices and memory close (later)

32



xv6 keyboard access
two control registers:

KBSTATP: status register (I/O address 0x64)
KBDATAP: data buffer (I/O address 0x60)

// inb() runs 'in' instruction: read from I/O address
st = inb(KBSTATP);
// KBS_DIB: bit indicates data in buffer
if ((st & KBS_DIB) == 0)
return −1;

data = inb(KBDATAP); // read from data --- *clears* buffer

/* interpret data to learn what kind of keypress/release */

33



programmed I/O
“programmed I/O”: write to or read from device controller buffers
directly

OS runs loop to transfer data to or from device controller

might still be triggered by interrupt
new data in buffer to read?
device processed data previously written to buffer?

34



exercise
system is running two applications

A: reading from network
B: doing tons of computation

timeline:
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

exercise 1: how many kernel/user mode switches?

exercise 2: how many context switches?

35



how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?1 2 3 4? 5? 6? 7? 8?

36



how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?

1 2 3 4? 5? 6? 7? 8?

36



how many mode switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get 4KB more

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2 3 4? 5? 6?

1 2 3 4? 5? 6? 7? 8?

36



how many context switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2

37



how many context switches?
A calls read() to 8KB of data from network
16KB of data comes in 10ms later
A calls read() again to get remaining 4KB

read() 8KB start
wait for device

(driver ‘top half’)

run B while A waits

copy from device
(driver ‘bottom half’)

mark A ready
run scheduler

switch to A (kernel)
copy first 8KB

(resume driver ‘top half’)

return from
read() syscall

read() syscall
copy 4KB from buffer

(driver ‘top half’)

return from
read() syscall

user mode (running A) user mode (running B)
kernel mode
depends — does scheduler run A right away?

1 2

37



direct memory access (DMA)

processor
interrupt
controller

memory bus

other processors… actual memory

other devicesdevice controller

external hardware?

observation: devices can read/write memory

can have device copy data to/from memory

38



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

39



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

39



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

39



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

39



direct memory access (DMA)

processor
interrupt
controller

memory bus

actual memory

other devicesdevice controller
status
read?
write?
buffer addr =0x9000…

control registers buffers/queues

external hardware?

OS chooses
memory address

(this example: 0x9000 (physical))

write to 0x9000
(instead of internal buffer)

OS reads from 0x9000
rather than copying

from device buffer

best case: OS chooses
location user program
passed to read()/etc.
(avoids copy!)

39



direct memory access (DMA)
much faster, e.g., for disk or network I/O

avoids having processor run a loop to copy data
OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)
OS specifies physical address to use…
instead of reading from device controller

40



direct memory access (DMA)
much faster, e.g., for disk or network I/O

avoids having processor run a loop to copy data
OS can run normal program during data transfer
interrupt tells OS when copy finished

device uses memory as very large buffer space

device puts data where OS wants it directly (maybe)
OS specifies physical address to use…
instead of reading from device controller

40



OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?

i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

41



OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?
i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

41



OS puts data where it wants
so far: where it wants is the device driver’s buffer

seems like OS could also put it directly where application wants it?
i.e. pointer passed to read() system call
called “zero-copy I/O”

should be faster, but, in practice, very rarely done:
if part of regular file, can’t easily share with page cache
device might expect contiguous physical addresses
device might expect physical address is at start of physical page
device might write data in differnt format than application expects
device might read too much data
need to deal with application exiting/being killed before device finishes
…

41



devices summary
device controllers connected via memory bus

usually assigned physical memory addresses
sometimes separate “I/O addresses” (special load/store instructions)

controller looks like “magic memory” to OS
load/store from device controller registers like memory
setting/reading control registers can trigger device operations

two options for data transfer
programmed I/O: OS reads from/writes to buffer within device controller
direct memory access (DMA): device controller reads/writes normal
memory

42



hard drives

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

-1

-2

-3

-4

-5

-6

-7

-8

plattersstack of flat discs
(only top visible)

spins when operating

headsread/write
magnetic signals

on platter surfaces

arm
rotates to position heads

over spinning platters

hard drive image: Wikimedia Commons / Evan-Amos 43



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

44



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

44



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

44



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

44



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

44



OS to disk interface
disk takes read/write requests

sector number(s)
location of data for sector
modern disk controllers: typically direct memory access

typically: close sector numbers =⇒ close on disk
for spinning disks, faster to read/write together
for SSDs, doesn’t matter much

can have queue of pending requests

disk processes them in some order
OS can say “write X before Y”

45



the FAT filesystem
FAT: File Allocation Table

probably simplest widely used filesystem (family)

named for important data structure: file allocation table

46



FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25

47



FAT and sectors
FAT divides disk into clusters

composed of one or more sectors

sector = minimum amount hardware can read
determined by disk hardware
historically 512 bytes, but often bigger now

cluster: typically 512 to 4096 bytes

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

cluster
(filesytem unit)

sector
24

25
47



FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

48



FAT: clusters and files
a file’s data stored in a list of clusters

file size isn’t multiple of cluster size? waste space

reading a file? need to find the list of clusters

…

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st

er
nu

m
be

r

the disk

example.txt

48



FAT: the file allocation table
big array on disk, one entry per cluster

each entry contains a number — usually “next cluster”
cluster num. entry value
0 4
1 7
2 5
3 1434… …
1000 4503
1001 1523… …

49



backup slides

50



why hard drives?
what filesystems were designed for

currently most cost-effective way to have a lot of online storage

solid state drives (SSDs) imitate hard drive interfaces

51



hard drives

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

-1

-2

-3

-4

-5

-6

-7

-8

plattersstack of flat discs
(only top visible)

spins when operating

headsread/write
magnetic signals

on platter surfaces

arm
rotates to position heads

over spinning platters

hard drive image: Wikimedia Commons / Evan-Amos 52



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

53



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

53



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

53



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

53



sectors/cylinders/etc.

cylinder

tracksector?

seek time — 5–10ms
move heads to cylinder
faster for adjacent accesses

rotational latency — 2–8ms
rotate platter to sector
depends on rotation speed
faster for adjacent reads

transfer time — 50–100+MB/s
actually read/write data

53



disk latency components
queue time — how long read waits in line?

depends on number of reads at a time, scheduling strategy

disk controller/etc. processing time

seek time — head to cylinder

rotational latency — platter rotate to sector

transfer time

54



cylinders and latency
cylinders closer to edge of disk are faster (maybe)

less rotational latency

55



sector numbers
historically: OS knew cylinder/head/track location

now: opaque sector numbers
more flexible for hard drive makers
same interface for SSDs, etc.

typical pattern: low sector numbers = probably closer to edge
(faster?)

typical pattern: adjacent sector numbers = adjacent on disk

actual mapping: decided by disk controller

56



hard disks are unreliable
Google study (2007), heavily utilized cheap disks

1.7% to 8.6% annualized failure rate
varies with age
≈ chance a disk fails each year
disk fails = needs to be replaced

9% of working disks had reallocated sectors

57



bad sectors
modern disk controllers do sector remapping

part of physical disk becomes bad — use a different one
disk uses error detecting code to tell data is bad
similar idea to storing + checking hash of data

this is expected behavior

maintain mapping (special part of disk, probably)

58



queuing requests
recall: multiple active requests

queue of reads/writes
in disk controller and/or OS

disk is faster for adjacent/close-by reads/writes
less seek time/rotational latency

disk controller and/or OS may need schedule requests
group nearby requests together

as user of disk: better to request multiple things at a time

59



disk performance and filesystems
filesystem can…

do contiguous or nearby reads/writes
bunch of consecutive sectors much faster to read
nearby sectors have lower seek/rotational delay

start a lot of reads/writes at once
avoid reading something to find out what to read next
array of sectors better than linked list

60



solid state disk architecture
controller

(includes CPU)

RAM

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

NAND
flash
chip

61



flash
no moving parts

no seek time, rotational latency

can read in sector-like sizes (“pages”) (e.g. 4KB or 16KB)

write once between erasures

erasure only in large erasure blocks (often 256KB to megabytes!)

can only rewrite blocks order tens of thousands of times
after that, flash starts failing

62



SSDs: flash as disk
SSDs: implement hard disk interface for NAND flash

read/write sectors at a time
sectors much smaller than erasure blocks
sectors sometimes smaller than flash ‘pages’
read/write with use sector numbers, not addresses
queue of read/writes

need to hide erasure blocks
trick: block remapping — move where sectors are in flash

need to hide limit on number of erases
trick: wear levening — spread writes out

63



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

64



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

64



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

64



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31

write sector 32

64



block remapping

being written

Flash
Translation

Layer

logical physical
0 93
1 260 187
… …
31 74
32 75 163
… …

remapping table

OS sector numbers flash locations

pages 0–63

pages 64–127

pages 128–191

pages 192-255

pages 256-319

pages 320-383

pages 128–191

pages 192–255

pages 256–319
erased block

can only erase
whole “erasure block”

“garbage collection”
(free up new space)

copied from erased

active data
erased + ready-to-write

unused (rewritten elsewhere)

read sector 31write sector 32

64



block remapping
controller contains mapping: sector → location in flash

on write: write sector to new location

eventually do garbage collection of sectors
if erasure block contains some replaced sectors and some current sectors…
copy current blocks to new locationt to reclaim space from replaced
sectors

doing this efficiently is very complicated

SSDs sometimes have a ‘real’ processor for this purpose

65



exercise
Assuming a FAT-like filesystem on an SSD, which of the following
are likely to be stored in the same (or very small number of) erasure
block?

[a] the clusters of a set of log file all in one directory written continuously
over months by a server and assigned a contiguous range of cluster
numbers
[b] the data clusters of a set of images, copied all at once from a camera
and assigned a variety of cluster numbers
[c] all the entires of the FAT (assume the OS only rewrites a sector of
the FAT if it is changed)

66



SSD performance
reads/writes: sub-millisecond

contiguous blocks don’t really matter

can depend a lot on the controller
faster/slower ways to handle block remapping

writing can be slower, especially when almost full
controller may need to move data around to free up erasure blocks
erasing an erasure block is pretty slow (milliseconds?)

67



extra SSD operations
SSDs sometimes implement non-HDD operations

on operation: TRIM

way for OS to mark sectors as unused/erase them

SSD can remove sectors from block map
more efficient than zeroing blocks
frees up more space for writing new blocks

68



aside: future storage
emerging non-volatile memories…

slower than DRAM (“normal memory”)

faster than SSDs

read/write interface like DRAM but persistent

capacities similar to/larger than DRAM

69


	device driver interfaces
	buffering / everything is a file

	devices as files
	Linux device driver interface
	device driver flow chart
	example top/bottom half

	device interfaces generally
	exercise
	direct-memory access
	summary

	hard disks, briefly
	sectors, platters, cylinders, etc.
	OS to disk interface

	the FAT filesystem
	intro and file allocation table

	backup slides
	aside: why HDDs?
	sectors, platters, cylinders, etc.
	seek time, rotational latency, transfer time
	error correcting codes, bad blocks
	queuing, hardware and software
	disk performance and filesystems

	SSD operation and performance
	generally
	block remapping
	exercise
	performance
	TRIM

	misc. storage media

