
1



last time
FAT file system

beginning of disk: ‘header’: sizes, location of FAT, data clusters
linked lists of data clusters

next pointers in FAT (near beginning of disk)
directory entries: file info incl. starting data cluster

inode-based filesystems
header (called superblock): location/size of inode array, free block map,
data blocks
inodes (in inode array):

file type, size, other metadata
block pointers (some direct, then less direct for larger files)

directory entries: name + inode number (index in inode array)
indirect pointer: points to block of more pointers to data blocks
double-indirect: pointers to blocks of indirect pointers

2



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

3



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of timessimilar pointers like xv6 FS — but more indirection

3



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of timessimilar pointers like xv6 FS — but more indirection

3



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and group

whole bunch of times

similar pointers like xv6 FS — but more indirection

3



Linux ext2 inode
struct ext2_inode {

__le16 i_mode; /* File mode */
__le16 i_uid; /* Low 16 bits of Owner Uid */
__le32 i_size; /* Size in bytes */
__le32 i_atime; /* Access time */
__le32 i_ctime; /* Creation time */
__le32 i_mtime; /* Modification time */
__le32 i_dtime; /* Deletion Time */
__le16 i_gid; /* Low 16 bits of Group Id */
__le16 i_links_count; /* Links count */
__le32 i_blocks; /* Blocks count */
__le32 i_flags; /* File flags */
...
__le32 i_block[EXT2_N_BLOCKS]; /* Pointers to blocks */
...

};

type (regular, directory, device)
and permissions (read/write/execute for owner/group/others)

owner and groupwhole bunch of times

similar pointers like xv6 FS — but more indirection

3



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

4



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

4



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer
triple-indirect pointer

4



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer
triple-indirect pointer

4



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer

double-indirect pointer

triple-indirect pointer

4



double/triple indirect

i_block[0]
i_block[1]
i_block[2]
i_block[3]
i_block[4]
i_block[5]
i_block[6]
i_block[7]
i_block[8]
i_block[9]
i_block[10]
i_block[11]
i_block[12]
i_block[13]
i_block[14]

…

……
…

… …

block pointers

blocks of block pointers

data blocks

12 direct pointers

indirect pointer
double-indirect pointer

triple-indirect pointer

4



ext2 indirect blocks (1)
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

5



ext2 indirect blocks (1)
12 direct block pointers

1 indirect block pointer
pointer to block containing more direct block pointers

1 double indirect block pointer
pointer to block containing more indirect block pointers

1 triple indirect block pointer
pointer to block containing more double indirect block pointers

exercise: if 1K blocks, 4 byte block pointers, how big can a file be?

5



ext2 indirect blocks (solution)
12 direct pointers: first 1K (block size) × 12 bytes of data
1 indirect pointer:

points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to 1K blocks
next 256KB of data

1 double indirect pointer
points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to pointers that each are like an indirect pointer
256KB per indirect pointer → next 256 · 256 KB of data

1 triple indiret
next 256 · 256 · 256 KB of data

total size: 12 + 256 + 2562 + 2563 KB = 16843020 KB ≈ 16GB
6



ext2 indirect blocks (2)
12 direct block pointers

1 indirect block pointer

1 double indirect block pointer

1 triple indirect block pointer

exercise: if 1K (210 byte) blocks, 4 byte block pointers,
how does OS find byte 215 of the file?

(1) using indirect pointer or double-indirect pointer in inode?
(2) what index of block pointer array pointed to by pointer in inode?

7



ext2 indirect blocks (2) (solution)
byte 215 = 32KB into file

12 direct pointers: first 1K (block size) × 12 bytes of data

1 indirect pointer:
points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to 1K blocks
next 256KB of data

going to be (32 - 12)th element

8



empirical file sizes

Roselli et al, “A Comparison of Filesystem Workloads”, in FAST 2000 9



typical file sizes
most files are small

sometimes 50+% less than 1kbyte
often 80-95% less than 10kbyte

doens’t mean large files are unimportant
still take up most of the space
biggest performance problems

10



extents
large file? lists of many thousands of blocks is awkward

…and requires multiple reads from disk to get

solution: store extents: (start disk block, size)
replaces or supplements block list

Linux’s ext4 and Windows’s NTFS both use this

11



allocating extents
challenge: finding contiguous sets of free blocks

NTFS: scan block map for “best fit”
look for big enough chunk of free blocks
choose smallest among all the candidates

don’t find any? okay: use more than one extent

12



seeking with extents
challenge: finding byte X of the file

with block pointers: can compute index

with extents: need to scan list?

13



filesystem reliability
a crash happens — what’s the state of my filesystem?

14



hard disk atomicity
interrupt a hard drive write?

write whole disk sector or corrupt it

hard drive/SSD stores checksum for each sector

write interrupted? — checksum mismatch
hard drive/SSD returns read error

15



reliability issues
is the filesystem in a consistent state?

do we know what blocks are free?
do we know what files exist?
is the data for files actually what was written?

also important topics, but won’t spend much time on these:

what data will I lose if storage fails?
mirroring, erasure coding (e.g. RAID) — using multiple storage devices
idea: if one storage device fails, other(s) still have data

what data will I lose if I make a mistake?
filesystem can store multiple versions
“snapshots” of what was previously there

16



several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

17



several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

17



several bad options (1)
suppose we’re moving a file from one directory to another on xv6
steps:

A: write new directory entry
B: overwrite (remove) old directory entry

if we do A before B and crash happens after A:
can have extra pointer of file
problem: if old directory entry removed later, will get confused and free
the file!

if we do B before A and crash happens after B:
the file disappeared entirely!

17



beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

18



beyond ordering
recall: updating a sector is atomic

happens entirely or doesn’t

can we make filesystem updates work this way?

yes — ‘just’ make updating one sector do the update

18



concept: transaction
transaction: bunch of updates that happen all at once

implementation trick: one update means transaction “commits”
update done — whole transaction happened
update not done — whole transaction did not happen

19



redo logging: file creation

B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

20



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 =

C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

20



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operations

write commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

20



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual diskwhen everything is written, can overwrite log

20



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual diskwhen everything is written, can overwrite log

20



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactions

later, start applying results to actual disk

when everything is written, can overwrite log

20



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

20



redo logging: file creation
B
E
G
I
N

…(new.txt, 53)…

data blk 17 =
(dir)

…

data blk 34 =
(file)

…
addr[0]=34

inode #53 =
…
1
0
1
…

free map pt 2 = C
O
M
M
I
T

B
E
G
I
N

…

data blk 74 =
(file)

…

super
block log inode array data

write log entries with intended operationswrite commit message to log

filesystem needs to ensure that committed
updates will definitely happen!
mechanism: check this log for commit messages later,
and redo them (just in case)

…and start more transactionslater, start applying results to actual disk

when everything is written, can overwrite log

20



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

21



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

21



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

21



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

21



redo logging: file creation

write to log transaction steps:
data blocks to create
direcotry entry, inode to write
directory inode (size, time)
update

normal operation

write to log “commit transaction”
in any order:

update file data blocks
update directory entry
update file inode
update directory inode

reclaim space in log
“garbage collection”

crash before commit?
file not created
no partial operation to real data

crash after commit?
file created
promise: will perform logged updates
(after system reboots/recovers)

read log and…

ignore any operation with no
“commit”

redo any operation with
“commit”

already done? — okay, setting
inode twice

reclaim space in log

recovery

21



idempotency
logged operations should be okay to do twice = idempotent

good example: set inode link count to 4

bad example: increment inode link count

good example: overwrite inode number X with new value
as long as last committed inode value in log is right…

bad example: allocate new inode with particular contents

good example: overwrite data block with new value

bad example: append data to last used block of file

22



redo logging summary
write intended operation to the log

before ever touching ‘real’ data
in format that’s safe to do twice

write marker to commit to the log
if exists, the operation will be done eventually

actually update the real data

23



redo logging and filesystems
filesystems that do redo logging are called journalling filesystems

24



exercise (1)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging, ext2-like filesystem with
1KB blocks, 4B block pointers

part 1: what’s modified?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log

25



exercise (2)
suppose OS performing operation of appending 100KB to a 100KB
file X in directory Y and uses redo logging

part 2: crash happens after writing:
log entries for entire operation
free block map changes
indirect blocks for file

…what is written after restart as part of this operation?
[A] free block map
[B] data blocks for file
[C] indirect blocks for file
[D] data blocks for directory
[E] inode for file
[F] inode for directory
[G] the log 26



degrees of consistency
not all journalling filesystem use redo logging for everything

some use it only for metadata operations

some use it for both metadata and user data

only metadata: avoids lots of duplicate writing

metadata+user data: integrity of user data guaranteed

27



distributed systems
multiple machines working together to perform a single task

called a distributed system

28



some distibuted systems models

client/server

server

client
1

client
2

client
N-1

client
N

…

node
1

node
2 node

3node
4

node
5

node
6

node
7

peer-to-peer

29



client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

30



client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

30



client/server model

serverclient

GET /index.html

index.html’s contents are …

client(s): “sometimes on”

sends requests to server(s)

needs to know
how to contact server

server(s): “always on”

responds to client requests
never initiaties contact
with a client

30



layers of servers?
ad

server

database
server

application
server

web
server

web
client

web server is also application server’s client

31



example: Wikipedia architecture

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 32

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png


example: Wikipedia architecture (zoom)

image by Timo Tijhof, via https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png 33

https://commons.wikimedia.org/wiki/File:Wikipedia_webrequest_flow_2015-10.png


peer-to-peer
no always-on server everyone knows about

hopefully, no one bottleneck — “scalability”

any machine can contact any other machine
every machine plays an approx. equal role?

set of machines may change over time

34



why distributed?
multiple machine owners collaborating

delegation of responsiblity to other entity
put (part of) service “in the cloud”

combine many cheap machines to replace expensive machine

easier to add incrementally

redundancy — one machine can fail and system still works?

35



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

36



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

36



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to B

queue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

36



mailbox model
mailbox abstraction: send/receive messages

machine
A the network machine

B
B: “Hello”

Send(B, “Hello”)
B: “Hello”

Recv() = “Hello”

network knows how to get message to Bqueue of messages
from sending program
waiting to be sent

queue of messages
not yet received by
receiving program

36



what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

37



what about servers?
client/server model: server wants to reply to clients

might want to send/receive multiple messages

can build this with mailbox idea
send a ‘return address’
need to track related messages

common abstraction that does this: the connection

37



extension: conections
connections: two-way channel for messages
extra operations: connect, accept

machine
A

machine
B

B: open connection to A?

Conn = Connect(B)

A: connection to B OK!

Conn = Accept()

B: (A, “2 + 2 = ?”)

Send(Conn, “2 + 2 = ?”)

“2 + 2 = ?” = Recv(Conn)

A: (B, “4”)

Send(Conn, “4”)

“4” = Recv(Conn) 38



connections versus pipes
connections look kinda like two-direction pipes

in fact, in POSIX will have the same API:

each end gets file descriptor representing connection

can use read() and write()

39



connections over mailboxes
real Internet: mailbox-style communication

send packets to particular mailboxes
no gaurentee on order, when received
no relationship between

connections implemented on top of this

full details: take networking (CS/ECE 4457)

40



connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

42



names and addresses
name address
logical identifier location/how to locate
hostname www.virginia.edu IPv4 address 128.143.22.36
hostname mail.google.com IPv4 address 216.58.217.69
hostname mail.google.com IPv6 address 2607:f8b0:4004:80b::2005

filename /home/cr4bd/NOTES.txt inode# 120800873
and device 0x2eh/0x46d

variable counter memory address 0x7FFF9430

service name https port number 443

43



hostnames
typically use domain name system (DNS) to find machine names

maps logical names like www.virginia.edu
chosen for humans
hierarchy of names

…to addresses the network can use to move messages
numbers
ranges of numbers assigned to different parts of the network
network routers knows “send this range of numbers goes this way”

44



connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

45



IPv4 addresses
32-bit numbers

typically written like 128.143.67.11
four 8-bit decimal values separated by dots
first part is most significant
same as 128 · 2563 + 143 · 2562 + 67 · 256 + 11 = 2 156 782 459

organizations get blocks of IPs
e.g. UVa has 128.143.0.0–128.143.255.255
e.g. Google has 216.58.192.0–216.58.223.255 and
74.125.0.0–74.125.255.255 and 35.192.0.0–35.207.255.255

some IPs reserved for non-Internet use (127.*, 10.*, 192.168.*)

46



IPv6 addresses
IPv6 like IPv4, but with 128-bit numbers

written in hex, 16-bit parts, seperated by colons (:)

strings of 0s represented by double-colons (::)

typically given to users in blocks of 280 or 264 addresses
no need for address translation?

2607:f8b0:400d:c00::6a =
2607:f8b0:400d:0c00:0000:0000:0000:006a

2607f8b0400d0c0000000000000006aSIXTEEN

47



selected special IPv6 addresses
::1 = localhost

anything starting with fe80 = link-local addresses
never forwarded by routers

48



backup slides

49



exercise
which are likely advantages of client/server model over
peer-to-peer?

[A] easier to make whole system work despite failure of any machine

[B] easier to handle most machines being offline a majority of the
time

[C] better suited to a mix of a few very big/high-performance and
many small/low-performance machines

50



fragments
Linux FS: a file’s last block can be a fragment — only part of a
block

each block split into approx. 4 fragments
each fragment has its own index

extra field in inode indicates that last block is fragment

allows one block to store data for several small files

51



mounting filesystems
Unix-like system

root filesystem appears as /

other filesystems appear as directory
e.g. lab machines: my home dir is in filesystem at /net/zf15

directories that are filesystems look like normal directories
/net/zf15/.. is /net (even though in different filesystems)

52



mounts on a dept. machine
/dev/sda1 on / type ext4 (rw,errors=remount−ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
...
udev on /dev type devtmpfs (rw,mode=0755)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
...
/dev/sda3 on /localtmp type ext4 (rw)
...
zfs1:/zf2 on /net/zf2 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf19 on /net/zf19 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
zfs4:/sw on /net/sw type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.136.9)
zfs3:/zf14 on /net/zf14 type nfs (rw,hard,intr,proto=udp,nfsvers=3,

noacl,sloppy,addr=128.143.67.236)
...

53



kernel FS abstractions
Linux: virtual file system API

object-oriented, based on FFS-style filesystem

to implement a filesystem, create object types for:
superblock (represents “header”)
inode (represents file)
dentry (represents cached directory entry)
file (represents open file)

common code handles directory traversal
and caches directory traversals

common code handles file descriptors, etc.
54



beyond mirroring
mirroring seems to waste a lot of space

10 disks of data? mirroring → 20 disks

10 disks of data? how good can we do with 15 disks?

best possible: lose 5 disks, still okay
can’t do better or it wasn’t really 10 disks of data

schemes that do this based on erasure codes
erasure code: encode data in way that handles parts missing (being
erased)

55



erasure code example
store 2 disks of data on 3 disks

recompute original 2 disks of data from any 2 of the 3 disks

extra disk of data: some formula based on the original disks
common choice: bitwise XOR

common set of schemes like this: RAID
Redundant Array of Independent Disks

56



snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

57



snapshots
filesystem snapshots

idea: filesystem keeps old versions of files around
accidental deletion? old version stil there
eventually discard some old versions

can access snapshot of files at prior time

mechanism: copy-on-write

changing file makes new copy of filesystem

common parts shared between versions

57



inode and copy-on-write

inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

58



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file sharedchallenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

58



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

58



inode and copy-on-write

old
inode

indirect blocks

…

…

file data

…

new inode

update: new data blocks
+ new indirect blocks
+ new inode

both old+new inode valid

unchanged parts of file shared

challenge: FFS/xv6/ext2 design
has big array of inodes

don’t want to write new copy
of entire inode array

58



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

59



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

59



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

59



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

59



extra indirection for inode array

root inode
indirect blocks

…

arrays of inodes
split into pieces

…

old
inode

update one inode?

create new root inode
+ pointers

unchanged parts of
inode array
shared between versions

multiple snapshots?
array of root inodes

59



copy-on-write indirection
file update = replace with new version

array of versions of entire filesystem

only copy modified parts
keep reference counts, like for paging assignment

lots of pointers — only change pointers where modifications happen

60



snapshots in practice
ZFS supports this (if turned on)

example: .zfs/snapshots/11.11.18-06 pseudo-directory

contains contents of files at 11 November 2018 6AM

61



multiple copies
FAT: multiple copies of file allocation table and header

in inode-based filesystems: often multiple copies of superblocks

if part of disk’s data is lost, have an extra copy
always update both copies
hope: disk failure to small group of sectors

hope: enough to recover most files on disk failure
extra copy of metadata that is important for all files
but won’t recover specific files/directories whose data was lost

62



aside: FAT date encoding
seperate date and time fields (16 bits, little-endian integers)

bits 0-4: seconds (divided by 2), 5-10: minute, 11-15: hour

bits 0-4: day, 5-8: month, 9-15: year (minus 1980)

sometimes extra field for 100s(?) of a second

63



Fast File System
the Berkeley Fast File System (FFS) ‘solved’ some of these
problems

McKusick et al, “A Fast File System for UNIX” https:
//people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
avoids long seek times, wasting space for tiny files

Linux’s ext2 filesystem based on FFS

some other notable newer solutions (beyond what FFS/ext2 do)
better handling of very large files
avoiding linear directory searches

64

https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/FFS.pdf


block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

65



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1

inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2

inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3

inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4

inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5

inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

65



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191

for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383

for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575

for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575

for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767

for directories /e, /a/b/d

65



block groups
(AKA cluster groups)

blocks
for /bigfile.txt

more blocks
for /bigfile.txt

more blocks
for /bigfile.txt

split disk into block groups
each block group like a mini-filesystem

split block + inode numbers across the groups
inode in one block group can reference blocks in another
(but would rather not)

goal: most data for each directory within a block group
directory entries + inodes + file data close on disk
lower seek times!

large files might need to be split across block groups

disk
super
block

free
map

inode
array data for block group 1

block group 1inodes
0–1023

blocks 1–8191for directories /, /a/b/c, /w/f

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 2

block group 2inodes
1024–2047

blocks 8192–16383for directories /a, /d, /q

free
map

inode
array data for block group 3

block group 3inodes
2048–3071

blocks 16384–24575for directories /b, /a/b, /w

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 4

block group 4inodes
3072–4095

blocks 16384–24575for directories /c, /d/g, /r

free
map

inode
array data for block group 5

block group 5inodes
4096–5119

blocks 24576–32767for directories /e, /a/b/d

65



allocation within block groups
In-use block

Expected typical arrangement.

Start of
Block Group

Free block

Small files fill holes near start of block group.

Start of
Block Group

Write a two block file

Large files fill holes near start of block group and then write 
most data to sequential range blocks.

Write a large file
Start of

Block Group

Anderson and Dahlin, Operating Systems: Principles and Practice 2nd edition, Figure 13.14 66



FFS block groups
making a subdirectory: new block group

for inode + data (entries) in different

writing a file: same block group as directory, first free block
intuition: non-small files get contiguous groups at end of block
FFS keeps disk deliberately underutilized (e.g. 10% free) to ensure this

can wait until dirty file data flushed from cache to allocate blocks
makes it easier to allocate contiguous ranges of blocks

67



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

68



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

68



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

68



several bad options (2)
suppose we’re creating a new file

A: mark blocks as used in free block map
B: write inode for file
C: write directory entry for file

if we do A before B+C and crash happens after A:
have blocks we can’t use (not free), but which are unused

if we do B before A+C and crash happens after B:
have inode we can’t use (not free), but which is not really used

if we do C before A+B and crash happens after C:
have directory entry that points to junk — will behave weirdly

68



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

70



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

71



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

72



xv6 filesystem performance issues
inode, block map stored far away from file data

long seek times for reading files

unintelligent choice of file/directory data blocks
xv6 finds first free block/inode
result: files/directory entries scattered about

blocks are pretty small — needs lots of space for metadata
could change size? but waste space for small files
large files have giant lists of blocks

linear searches of directory entries to resolve paths

73



ext2 indirect blocks (2)
12 direct block pointers

1 indirect block pointer

1 double indirect block pointer

1 triple indirect block pointer

exercise: if 1K (210 byte) blocks, 4 byte block pointers,
how does OS find byte 215 of the file?

(1) using indirect pointer or double-indirect pointer in inode?
(2) what index of block pointer array pointed to by pointer in inode?

74



ext2 indirect blocks (2) (solution)
byte 215 = 32KB into file

12 direct pointers: first 1K (block size) × 12 bytes of data

1 indirect pointer:
points to block with 1K (block size)/4 byte (pointer size) = 256 pointers
256 pointers point to 1K blocks
next 256KB of data

going to be (32 - 12)th element

75



exercise
say xv6 filesystem with:

64-byte inodes (12 direct + 1 indirect pointer)
16-byte directory entries
512 byte blocks
2-byte block pointers

how many blocks (not storing inodes) is used to store a directory of
200 30464B (29 · 1024 + 256 byte) files?

remember: blocks could include blocks storing data or block pointers or
directory enties

how many blocks is used to store a directory of 2000 3KB files?

76



recall: FAT: file creation (1)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st
er

nu
m
be
r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

77



recall: FAT: file creation (2)
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st
er

nu
m
be
r

the disk
entry value index
… …
20 18
0 (free) 19
-1 (end mark) 20
0 (free) 22 21
0 (free) 24 22
-1 (end) 23
0 (free) -1 (end) 24
35 25
48 26
0 (free) 27
… …

file allocation table

directory of new file

“foo.txt”, cluster 11, size …, created …
…
“quux.txt”, cluster 104, size …, created …

“new.txt”, cluster 21, size …, created …
unused entry
unused entry
unused entry
…

78



exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st
er

nu
m
be
r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed

exercise: what happens if only 1, 2 complete?
everything but 3?

79



exercise: FAT file creation
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

clu
st
er

nu
m
be
r

the disk
1 FAT entries for directory + file
2
3 new directory cluster

4
5 new file clusters
6

6 clusters to write
on loss of power: only some completed
exercise: what happens if only 1, 2 complete?
everything but 3?

79



exercise: FAT ordering
(creating a file that needs new cluster of direntries)
1. FAT entry for extra directory cluster
2. FAT entry for new file clusters
3. file clusters
4. file’s directory entry (in new directory cluster)
what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4
B. 4, 3, 1, 2
C. 1, 3, 4, 2
D. 3, 4, 2, 1
E. 3, 1, 4, 2

80



exercise: xv6 FS ordering
(creating a file that neeeds new block of direntries)
1. free block map for new directory block
2. free block map for new file block
3. directory inode
4. new file inode
5. new directory entry for file (in new directory block)
6. file data blocks
what ordering is best if a crash happens in the middle?
A. 1, 2, 3, 4, 5, 6
B. 6, 5, 4, 3, 2, 1
C. 1, 2, 6, 5, 4, 3
D. 2, 6, 4, 1, 5, 3
E. 3, 4, 1, 2, 5, 6

ignoring journalling for now — we’ll talk about it later
81



inode-based FS: careful ordering
mark blocks as allocated before referring to them from directories

write data blocks before writing pointers to them from inodes

write inodes before directory entries pointing to it

remove inode from directory before marking inode as free
or decreasing link count, if there’s another hard link

idea: better to waste space than point to bad data

82



recovery with careful ordering
avoiding data loss → can ‘fix’ inconsistencies

programs like fsck (filesystem check), chkdsk (check disk)
run manually or periodically or after abnormal shutdown

83



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

84



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation
general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

84



inode-based FS: creating a file

allocate data block

write data block

update free block map

update file inode

update directory entry
filename+inode number

update direcotry inode
modification time

normal operation

general rule:
better to waste space
than point to bad data

mark blocks/inodes used before writing block/inode pointers

read all directory entries

scan all inodes

free unused inodes
unused = not in directory

free unused data blocks
unused = not in inode lists

scan directories for missing
update/access times

recovery (fsck)

84



inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?
1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

85



inode-based FS: exercise: unlink
what order to remove a hard link (= directory entry) for file?
1. overwrite directroy entry for file
2. decrement link count in inode (but link count still > 1 so don’t remove)

assume not the last hard link

what does recovery operation do?

85



inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?
1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

86



inode-based FS: exercise: unlink last
what order to remove a hard link (= directory entry) for file?
1. overwrite last directroy entry for file
2. mark inode as free (link count = 0 now)
3. mark inode’s data blocks as free

assume is the last hard link

what does recovery operation do?

86



fsck
Unix typically has an fsck utility

Windows equivalent: chkdsk

checks for filesystem consistency
is a data block marked as used that no inodes uses?
is a data block referred to by two different inodes?
is a inode marked as used that no directory references?
is the link count for each inode = number of directories referencing it?
…

assuming careful ordering, can fix errors after a crash without loss

maybe can fix other errors, too

87



fsck costs
my desktop’s filesystem:
2.4M used inodes; 379.9M of 472.4M used blocks

recall: check for data block marked as used that no inode uses:
read blocks containing all of the 2.4M used inodes
add each block pointer to a list of used blocks
if they have indirect block pointers, read those blocks, too
get list of all used blocks (via direct or indirect pointers)
compare list of used blocks to actual free block bitmap

pretty expensive and slow

88



running fsck automatically
common to have “clean” bit in superblock

last thing written (to set) on shutdown

first thing written (to clear) on startup

on boot: if clean bit clear, run fsck first

89



ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

90



ordering and disk performance
recall: seek times

would like to order writes based on locations on disk
write many things in one pass of disk head
write many things in cylinder in one rotation

ordering constraints make this hard:

free block map for file (start), then file blocks (middle), then…

file inode (start), then directory (middle), …

90



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

91



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

91



mirroring whole disks
alternate strategy: write everything to two disks

always write to both

read from either
(or different parts of both – faster!)

91



beyond mirroring
mirroring seems to waste a lot of space

10 disks of data? mirroring → 20 disks

10 disks of data? how good can we do with 15 disks?

best possible: lose 5 disks, still okay
can’t do better or it wasn’t really 10 disks of data

schemes that do this based on erasure codes
erasure code: encode data in way that handles parts missing (being
erased)

92



erasure code example
store 2 disks of data on 3 disks

recompute original 2 disks of data from any 2 of the 3 disks

extra disk of data: some formula based on the original disks
common choice: bitwise XOR

common set of schemes like this: RAID
Redundant Array of Independent Disks

93



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1write changed blocks

2write log header
(commits transaction)

3write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

94



the xv6 journal

number of blocks
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1write changed blocks

2write log header
(commits transaction)

3write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

94



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction

start: num blocks = 0

1write changed blocks

2write log header
(commits transaction)

3write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

94



the xv6 journal

number of blocks = 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1write changed blocks

2write log header
(commits transaction)

3write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

94



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1write changed blocks

2write log header
(commits transaction)

3write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

94



the xv6 journal

number of blocks = N
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1write changed blocks

2write log header
(commits transaction)

3write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

94



the xv6 journal

number of blocks = N= 0
location for first block
location for second block…
first block (log copy)

second block (log copy)

…
…
non-log block

non-log block
…

xv6 log (one transaction)

log header
(one sector)

data of
transaction

non-0: committed
otherwise: not committed or
no transaction
start: num blocks = 0

1write changed blocks

2write log header
(commits transaction)

3write data
redone on recovery
(if number of blocks 6= 0)

4 clear log header
ready for next transaction

94



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

95



what is a transaction?
so far: each file update?

faster to do batch of updates together
one log write finishes lots of things
don’t wait to write

xv6 solution: combine lots of updates into one transaction

only commit when…
no active file operation, or
not enough room left in log for more operations

95



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

96



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

97



limiting log size
once transaction is written to real data, can discard

sometimes called “garbage collecting” the log

may sometimes need to block to free up log space
perform logged updates before adding more to log

hope: usually log cleanup happens “in the background”

98



redo logging problems
doesn’t the log get infinitely big?

writing everything twice?

99


	inodes, indirect blocks (con't)
	exercise 1

	empirical file sizes
	extents
	redundancy/reliability
	filesystem corruption

	write-ahead logging
	idea: beyond ordering
	redo logging
	exercise
	degrees of consistency

	distributed systems/networks intro
	introduction, models, goals

	communication models
	names and addresses
	hostnames
	IPv4 addresses
	IPv6 addresses

	backup slides
	distributed model exercise
	fragments
	mounts
	erasure coding (extremely briefly)
	snapshots and copy-on-write
	redundancy [if time]
	FAT date encoding
	FFS

	block groups
	filesystem corruption (alt)
	xv6 filesystem performance problems
	ext2 indirect blocks exercise 2

	xv6 space exercise
	FAT update ordering and crashes
	xv6 FS update ordering and crashes
	ordering rules
	aside: ordering and disk performance
	mirroring disks
	erasure coding (extremely briefly)

	the xv6 FS journal
	redo logging overhead/GC


