
1

last time
redo logging to ensure consistency after crash

write intention to a log before performing operation
“commit” message indicates complete intention
after commit, do operation eventually
after operation done, eventually cleanup log
on crash: do operation for anything committed, ignore anything not

why distributed systems?
non-technical reasons: cooperation, separate management
technical reasons: relability, adding capacity incrementally, …

mailbox model: send ‘letters’ with address over network
connection model: two way pipe over network
names versus addresses

2

on difficulty, etc. (1)
on grading:

I’m not going to add additional “extra credit” assignments
making “too much work” problem worse

the grading policy listed says that the thresholds for a D-/GC are
60% weighted raw score or lower

I’ll make this decision based on how the final goes (Spring 2020: 54%
was D-/GC threshold)
department grading guidelines: “D is used for students who demonstrate
minimal competence in learning objectives, but not enough to
recommend further studies or activities in related areas.”

3

on difficulty, etc. (2)
re: amount of time on assignments

from surveys a few years ago: big variance in self-reported time on
assignments

probably worse with less effective office hours + other changes — but
how much?

would like to understand/avoid the sort of issues that cause some
students to report much higher amount of time than others

more guidance re: C++ pointer issues?
some prior faculty have tried review session at beg. of semester, but seems students
who need it most didn’t attend
could maybe provide some more utility functions

more guidance re: general code organization
(but worried about polluting already long assignment writeups)

guidance re: debugging?
better testing code can help sometimes
but it seems providing more testing code often makes students debug worse 4

names and addresses
name address
logical identifier location/how to locate
hostname www.virginia.edu IPv4 address 128.143.22.36
hostname mail.google.com IPv4 address 216.58.217.69
hostname mail.google.com IPv6 address 2607:f8b0:4004:80b::2005

filename /home/cr4bd/NOTES.txt inode# 120800873
and device 0x2eh/0x46d

variable counter memory address 0x7FFF9430

service name https port number 443

6

IPv4 addresses and routing tables

router
network 1 network 2

network 3

if I receive data for… send it to…
128.143.0.0—128.143.255.255 network 1
192.107.102.0–192.107.102.255 network 1
… …
4.0.0.0–7.255.255.255 network 2
64.8.0.0–64.15.255.255 network 2
… …
anything else network 3

7

connection missing pieces?
how to specify the machine?

multiple programs on one machine? who gets the message?

8

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers

think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

9

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

9

port numbers
we run multiple programs on a machine

IP addresses identifying machine — not enough

so, add 16-bit port numbers
think: multiple PO boxes at address

0–49151: typically assigned for particular services
80 = http, 443 = https, 22 = ssh, …

49152–65535: allocated on demand
default “return address” for client connecting to server

9

protocols
protocol = agreement on how to comunicate

syntax (format of messages, etc.)
e.g. mailbox model: where does address go?
e.g. connection: where does return address go?

semantics (meaning of messages — actions to take, etc.)
e.g. connection: when to consider connection created?

10

human protocol: telephone
caller: pick up phone
caller: check for service
caller: dial
caller: wait for ringing

callee: “Hello?”
caller: “Hi, it’s Casey…”

callee: “Hi, so how about …”
caller: “Sure, …”
… …

callee: “Bye!”
caller: “Bye!”
hang up hang up

11

layered protocols
IP: protocol for sending data by IP addresses

mailbox model
limited message size

UDP: send datagrams built on IP
still mailbox model, but with port numbers

TCP: reliable connections built on IP
adds port numbers
adds resending data if error occurs
splits big amounts of data into many messages

HTTP: protocol for sending files, etc. built on TCP

12

other notable protocols (transport layer)
TLS: Transport Layer Security — built on TCP

like TCP, but adds encryption + authentication

SSH: secure shell (remote login) — built on TCP

SCP/SFTP: secure copy/secure file transfer — built on SSH

HTTPS: HTTP, but over TLS instead of TCP

FTP: file transfer protocol

…

13

sockets
socket: POSIX abstraction of network I/O queue

any kind of network
can also be used between processes on same machine

a kind of file descriptor

14

connected sockets
sockets can represent a connection

act like bidirectional pipe
client server

(setup connection / get fds)
write(fd, buffer, size)

read(fd, buffer, size)

write(fd, buffer, size)

read(fd, buffer, size)

15

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

16

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

16

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fd

listen() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

16

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

16

sockets and server sockets

socket

client

server
socket

socket

server

server:
ss_fd = socket(…)
…
bind(ss_fd, addr, …)
listen(ss_fd, …)

client:
fd = socket(…)

socket() function — create socket fdlisten() — turn socket into server socket
still has a file descriptor, but …
can only accept() — create normal socket

request connectio
n

clien
t: c

onn
ect

(fd
, add

r,
…)

server:
fd = accept(ss_fd, …)

connection

16

connections in TCP/IP
on network: connection identified by 5-tuple

used by OS to lookup “where is the file descriptor?”

(protocol=TCP, local IP addr., local port, remote IP addr., remote port)

both ends always have an address+port

what is the IP address, port number? set with bind() function
typically always done for servers, not done for clients
system will choose default if you don’t

17

connections on my desktop
cr4bd@reiss−t3620
: /zf14/cr4bd ; netstat −−inet −−inet6 −−numeric
Active Internet connections (w/o servers)
Proto Recv−Q Send−Q Local Address Foreign Address State
tcp 0 0 128 . 143 . 67 . 91 : 49202 1 2 8 . 1 4 3 . 6 3 . 3 4 : 2 2 ESTABLISHED
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 8 0 3 128 . 143 . 67 . 236 : 2049 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 50292 1 2 8 . 1 4 3 . 6 7 . 2 2 6 : 2 2 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54722 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 52002 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 7 3 2 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 40664 128 . 143 . 67 . 236 : 2049 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 54098 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 49302 128 . 143 . 67 . 236 : 63439 TIME_WAIT
tcp 0 0 128 . 143 . 67 . 91 : 50236 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 8 . 1 4 3 . 6 7 . 9 1 : 2 2 1 7 2 . 2 7 . 9 8 . 2 0 : 4 9 5 6 6 ESTABLISHED
tcp 0 0 128 . 143 . 67 . 91 : 51000 1 2 8 . 1 4 3 . 6 7 . 2 3 6 : 1 1 1 TIME_WAIT
tcp 0 0 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 1 2 7 . 0 . 0 . 1 : 6 3 1 ESTABLISHED
tcp 0 0 1 2 7 . 0 . 0 . 1 : 6 3 1 1 2 7 . 0 . 0 . 1 : 5 0 4 3 8 ESTABLISHED

18

exercise
if I have a server socket and I call accept() on it to create a
connection,
we would expect this to send a message to the client machine:

A. immediately after the call to accept()
B. sometime after the client machine calls connect()
C. A and B
D. neither A nor B

for the server to talk to the client that just connected, it should
write() to

A. the server socket that it passed to accept()
B. the file descriptor returned from accept()
C. A or B (either will work)
D. neither A nor B

19

local/Unix domain sockets
POSIX defines sockets that only work on local machine

example use: apps talking to display manager program
want to display window? connect to special socket file
probably don’t want this to happen from remote machines

equivalent of name+port: socket file
appears as a special file on disk

we will use this in assignment
but you won’t directly write code that uses POSIX API

20

Unix-domain sockets on my laptop
cr4bd@reiss−lenovo :~$ netstat −−unix −a
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I−Node Path
unix 2 [] DGRAM 40077 /run/user/1000/systemd/notify
unix 2 [ACC] SEQPACKET LISTENING 844 /run/udev/control
unix 2 [ACC] STREAM LISTENING 40080 /run/user/1000/systemd/private
unix 2 [ACC] STREAM LISTENING 40084 /run/user/1000/gnupg/S .gpg−agent
unix 2 [ACC] STREAM LISTENING 37867 /run/user/1000/gnupg/S .dirmngr
unix 2 [ACC] STREAM LISTENING 37868 /run/user/1000/bus
unix 2 [ACC] STREAM LISTENING 37869 /run/user/1000/gnupg/S .gpg−agent .browser
unix 2 [ACC] STREAM LISTENING 37870 /run/user/1000/gnupg/S .gpg−agent .extra
unix 2 [ACC] STREAM LISTENING 60556115 /var/run/cups/cups .sock
unix 2 [ACC] STREAM LISTENING 37871 /run/user/1000/gnupg/S .gpg−agent .ssh
unix 2 [ACC] STREAM LISTENING 37874 /run/user/1000/keyring/control
unix 2 [ACC] STREAM LISTENING 49772163 /run/user/1000/pulse/cli
unix 2 [ACC] STREAM LISTENING 49772158 /run/user/1000/pulse/native
unix 2 [ACC] STREAM LISTENING 59062776 /run/user/1000/speech−dispatcher/speechd .sock
unix 2 [ACC] STREAM LISTENING 32980 @/tmp/ .X11−unix/X0
unix 2 [ACC] STREAM LISTENING 60557382 /run/cups/cups .sock
. . .

21

remote procedure calls
goal: I write a bunch of functions

can call them from another machine

some tool + library handles all the details

called remote procedure calls (RPCs)

22

transparency
common hope of distributed systems is transparency

transparent = can “see through” system being distributed

for RPC: no difference between remote/local calls

(a nice goal, but…we’ll see)

23

stubs
typical RPC implementation: generates stubs

stubs = wrapper functions that stand in for other machine

calling remote procedure? call the stub
same prototype are remote procedure

implementing remote procedure? a stub function calls you

24

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

25

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

25

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)

generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

25

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

25

typical RPC data flow

Machine B (RPC server)
Machine A (RPC client)

client
program client stub RPC library

RPC libraryserver stub
server

program

function call

return value

return value

function call

network
(using sockets)

generated by compiler-like tool
contains wrapper function
convert arguments to bytes
(and bytes to return value)
generated by compiler-like tool
contains actual function call
converts bytes to arguments
(and return value to bytes)

idenitifier for function being called +
its arguments converted to bytes

return value (or failure indication)

25

exercise: errors that can occur in RPC?
exercise: ways remote procedure calls can fail that local procedure
calls probably can’t?

(name examples in the chat)

26

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

27

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

28

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

28

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

29

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

29

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

29

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

29

gRPC code preview
client:
stub = ...
try:
stub.MakeDirectory(MakeDirectoryArgs(path="/directory/name"))

except:
handle error

server:
class DirectoriesImpl(DirectoriesServicer):
...
def MakeDirectory(self, request, context):
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return Empty()

stub and context to pass info about
where the function is actually located (on client)
and how it was called (on server)

gRPC requires exactly one arguments object
to simplify library/cross-language compatability
some other RPC systems are more flexible

generated code (“server stub”) defines base class
server subclass overrides methods to provide remote calls
so it’s easy for library to find them

client: calls “MakeDirectory” function on server
local-only code would have been:
MakeDirectory(path="/directory/name")

server: defines “MakeDirectory” function
local-only code would have been:
def MakeDirectory(path):

...

30

marshalling
RPC system needs to send arguments over the network

and also return values

called marshalling or serialization

can’t just copy the bytes from arguments
pointers (e.g. char*)
different architectures (32 versus 64-bit; endianness)

31

interface description langauge
tool/library needs to know:

what remote procedures exist
what types they take

typically specified by RPC server author in
interface description language

abbreviation: IDL

compiled into stubs and marshalling/unmarshalling code

32

why IDL?
could just use a source file, but…

missing info: how should a char be passed?
string? fixed length array? pointer to single char?
who allocates the memory?

want to be machine/programming language-neutral
choose set of types that work in both C, Python

versioning/compatiblity
what if older server interoperates with newer client?

33

gRPC IDL example + marshalling
message MakeDirArgs { string path = 1; }

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}

}
example possible format (not what gRPC actually does):

MakeDirectory(MakeDirArgs(path=”/foo”))) becomes:

\x0dMakeDirectory\x01\x04/foo

0x0d = length of ‘MakeDirectory’
0x04 = length of ‘/foo’

34

GRPC examples
will show examples for gRPC

RPC system originally developed at Google

what we’ll use for upcoming assignment

defines interface description language, message format

uses a protocol on top of HTTP/2

note: gRPC makes some choices other RPC systems don’t

35

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

36

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

36

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python classrule: arguments/return value always a message

36

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

36

GRPC IDL example
syntax="proto3";
message MakeDirArgs { string path = 1; }
message ListDirArgs { string path = 1; }

message DirectoryEntry {
string name = 1;
bool is_directory = 2;

}

message DirectoryList {
repeated DirectoryEntry entries = 1;

}

message Empty {}

service Directories {
rpc MakeDirectory(MakeDirArgs) returns (Empty) {}
rpc ListDirectory(ListDirArgs) returns (DirectoryList) {}

}

messages: turn into C++/Python classes
with accessors + marshalling/demarshalling functions
part of protocol buffers (usable without RPC)

fields are numbered (can have more than 1 field)
numbers are used in byte-format of messages
allows changing field names, adding new fields, etc.

will become method of Python class

rule: arguments/return value always a message

36

RPC server implementation (method 1)
import dirproto_pb2
import dirproto_pb2_grpc

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def MakeDirectory(self, request, context):
print("MakeDirectory called with path=", request.path)
try:

os.mkdir(request.path)
except OSError as e:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return dirproto_pb2.Empty()

37

RPC server implementation (method 2)
import dirproto_pb2, dirproto_pb2_grpc
from dirproto_pb2 import DirectoryList, DirectoryEntry

class DirectoriesImpl(dirproto_pb2_grpc.DirectoriesServicer):
...
def ListDirectory(self, request, context):
try:

result = DirectoryList()
for file_name in os.listdir(request.path)

result.entries.append(DirectoryEntry(name=file_name, ...))
except OSError as err:

context.abort(grpc.StatusCode.UNKNOWN,
"OS returned error: {}".format(err))

return result

38

RPC server implementation (starting)
create server that uses thread pool with
three threads to run procedure calls
server = grpc.server(

futures.ThreadPoolExecutor(max_workers=3)
)
DirectoriesImpl() creates instance of implementaiton class
add_DirectoryServicer_to_server part of generated code
dirproto_pb2_grpc.add_DirectoryServicer_to_server(

DirectoriesImpl()
)
server.add_insecure_port('127.0.0.1:12345')
server.start() # runs server in separate thread

39

RPC client implementation (method 1)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import MakeDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:43534')
stub = DirectoriesStub(channel)
args = MakeDirectoryArgs(path="/directory/name")
try:
stub.MakeDirectory(args)

except grpc.RpcError as error:
... # handle error

40

RPC client implementation (method 2)
from dirproto_pb2_grpc import DirectoriesStub
from dirproto_pb2 import ListDirectoryArgs

channel = grpc.insecure_channel('127.0.0.1:43534')
stub = DirectoriesStub(channel)
args = ListDirectoryArgs(path="/directory/name")
try:
result = stub.ListDirectory(args)
for entry in result.entries:
print(entry.name)

except grpc.RpcError as error:
... # handle error

41

RPC non-transparency
setup is not transparent — what server/port/etc.

ideal: system just knows where to contact?

errors might happen
what if connection fails?

server and client versions out-of-sync
can’t upgrade at the same time — different machines

performance is very different from local

42

RPC locally
not uncommon to use RPC on one machine

more convenient alternative to pipes?

allows shared memory implementation
mmap one common file
use mutexes+condition variables+etc. inside that memory

43

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

44

network failures: two kinds
messages lost

messages delayed/reordered

45

network failures: message lost?
detect with acknowledgements (“yes I got it”)

can recover by retrying

can’t distinguish: original message lost or acknowledgment lost

can’t distinguish: machine crashed or network down/slow for a while

46

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

47

exercise: RPC failure scenarios
RPC with MakeDirectory(”foo”)

option A: client stub returns when sent to server

option B: client stub waits for server to return OK

for now, assume only network failures

I call MakeDirectory(”foo”) and it throws an exception:
with Option A: could directory have been created?
with Option B: could directory have been created?

I call MakeDirectory(”foo”) and it throws no exception:
with Option A: could directory have NOT been created?
with Option B: could directory have NOT been created?

48

dealing with network message lost

machine A machine B
append to file A

machine A machine B

append to file A

does A need to retry appending? can’t tell

49

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

50

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

50

handling failures: try 1

machine
A

machine
B

append to file A

yup, done!

machine
A

machine
B

append to file A

yup, done!

does A need to retry appending? still can’t tell

50

handling failures: try 2

machine
A

machine
B

append to file A

yup, done!append to file A (if you haven’t)

yup, done!

retry (in an idempotent way) until we get an acknowledgement
basically the best we can do, but when to give up?

51

network failures: message reordered?
can detect with sequence numbers

connection protocols do this

RPC abstraction — generally doesn’t
potentially receive ‘stale’ RPC call

can’t distinguish: message lost or just delayed and not received yet

52

handling reordering

machine
A

machine
B

part 1: “hello ”
part 2: “world!”

got part 1+2

53

failure models
how do networks ‘fail’?…

how do machines ‘fail’?…

well, lots of ways

54

two models of machine failure
fail-stop

failing machines stop responding/don’t get messages
or one always detects they’re broken and can ignore them

Byzantine failures

failing machines do the worst possible thing

55

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

56

dealing with machine failure
recover when machine comes back up

does not work for Byzantine failures

rely on a quorum of machines working
minimum 1 extra machine for fail-stop
minimum 3F + 1 to handle F failures with Byzantine failures

can replace failed machine(s) if they never come back

56

backup slides

57

client/server flow (multiple connections)

spawn new process (fork)
or thread per connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

58

RPC locally
not uncommon to use RPC on one machine

more convenient alternative to pipes?

allows shared memory implementation
mmap one common file
use mutexes+condition variables+etc. inside that memory

59

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

60

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

60

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

60

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

60

DNS: distributed database

my
machine

ISP’s
DNS server

address sent to my machine
when it connected to network

root
DNS server

.edu
DNS server

virginia.edu
DNS server

cs.virginia.edu
DNS server

address for
www.cs.virginia.edu?

www.cs.virginia.edu =
128.143.67.11

www.cs.virginia.edu?
try .edu server at …

.edu server doesn’t change much
optimization: cache its address

check for updated version once in a while

60

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

61

Unix-domain sockets: client example
struct sockaddr_un server_addr;
server_addr.sun_family = AF_UNIX;
strcpy(server_addr.sun_path, "/path/to/server.socket");
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (connect(fd, &server_addr, sizeof(server_addr)) < 0)

handleError();
... // use 'fd' here

61

lots of writing?
entire log can be written sequentially

ideal for hard disk performance
also pretty good for SSDs

no waiting for ‘real’ updates
application can proceed while updates are happening
files will be updated even if system crashes

often better for performance!

62

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 63

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 63

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
} 63

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

64

client/server flow (one connection at a time)

create+configure
server socket

setup pair
of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

64

client/server flow (one connection at a time)

create+configure
server socket

setup pair
of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

64

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

64

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

64

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

64

client/server flow (one connection at a time)

create+configure
server socketsetup pair

of connection
sockets (fd’s)

communicate

close connection

create client socket

connect socket to server hostname:port
(gets assigned local host:port)

write request

read response

close socket

create server socket

bind to host:port

start listening for connections

accept a new connection
(get connection socket)

read request from connection socket

write response to connection socket

close connection socket

shown here:
client writes first
client/server takes turns
real world? varies between protocols

64

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

65

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

65

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

65

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

65

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...

server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...

server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

65

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

66

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

66

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

66

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

67

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

67

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

67

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

67

connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

68

aside: on server port numbers
Unix convention: must be root to use ports 0–1023

root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

69

selected special IPv4 addresses
127.0.0.0 — 127.255.255.255 — localhost

AKA loopback
the machine we’re on
typically only 127.0.0.1 is used

192.168.0.0–192.168.255.255 and
10.0.0.0–10.255.255.255 and
172.16.0.0–172.31.255.255

“private” IP addresses
not used on the Internet
commonly connected to Internet with network address translation
also 100.64.0.0–100.127.255.255 (but with restrictions)

169.254.0.0-169.254.255.255
link-local addresses — ‘never’ forwarded by routers

70

network address translation
IPv4 addresses are kinda scarce

solution: convert many private addrs. to one public addr.

locally: use private IP addresses for machines

outside: private IP addresses become a single public one

commonly how home networks work (and some ISPs)

71

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

72

why IDL? (1)
why don’t most tools use the normal source code?

alternate model: just give it a header file

missing information (sometimes)
is char array nul-terminated or not?
where is the size of the array the int* points to stored?
is the List* argument being used to modify a list or just read it?
how should memory be allocated/deallocated?
how should argument/function name be sent over the network?

72

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

73

why IDL? (2)
why don’t most tools use the normal source code?

alternate model: just give it a header file

machine-neutrality and language-neutrality
common goal: call server from any language, any type of machine
how big should long be?
how to pass string from C to Python server?

versioning/compatibility
what should happen if server has newer/older prototypes than client?

73

	distributed systems con't
	names and addresses
	routing
	port numbers
	protocols / TCP / UDP

	sockets
	introduction / read-write flow
	connection setup outline
	exercise: socket behavior?
	local sockets

	remote procedure calls
	RPC concept and stubs
	RPC data flow
	RPC errors exercise
	preview: code using an RPC library
	marshalling
	why interface description languages?
	one idea for marshalling
	GRPC example
	introduction
	IDL
	Python server
	Python client

	non-transparency: errors and versioning and performance
	RPC locally

	failure
	failure models
	introduction
	kinds of network failures
	aside: failure models and RPC
	network failure scenarios

	distributed failures
	fail stop

	backup slides
	server flow (multiple connections)
	RPC locally
	DNS
	local sockets: code example
	redo logging: lots of writing?
	example: echo client/server
	server flow (simple)
	connection setup code: client
	connection setup code: server
	small port number note
	special IPv4 addresses
	RPC: why IDL? (longer)

