
1

last time
distributed transaction idea:

update across machines happens together or not
hide “half-done” state, even if failures

two-phase commit
coordinator collects votes from workers, makes decision
coordinator only decides to commit if all votes say to commit
if pending transaction, workers don’t allow conflicting operations
redo logging: write log before sending any message, resend on crash

2

two-phase commit assignment
two phase commit assignment

store single value across workers

single coordinator sends messages to/from workers to change values
workers current value can be queried directly

goal: several replicas all have same value or unavailable

…even if failures

3

assignment: RPC
coordinator talks to worker by making RPC calls

workers only talk to coordinator by replying to RPC
example: make ”prepare” call, worker’s ”agree-to-X” is return value

RPC system detects worker being down, network errors, etc.
become Python exception in coordinator

coordinator verifies Commit/Abort received instead of worker asking
again

automatic: Commit/Abort message is RPC call with return value;
RPC call fails if problem getting return value

workers might never agree-to-abort (and that’s okay)
no conflicting operations: only crash or agree-to-commit

4

assignment: failure recovery
to simplify assignment: always return error if you detect failure

assume testing code/user will restart the coordinator+workers

coordinator sends messages to workers on reboot to recover
resend prepare or commit, abort, etc.

5

assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

6

assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

7

TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

8

TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

8

TPC: reordering
coordinator

worker 1

worker 2

PREPARE
id=0

PREPARE
id=0
(resent)

AGREE-TO-
COMMIT
id=0

COMMIT
id=0

AGREE-TO-
COMMIT
id=0

PREPARE
id=1

but maybe prepare wasn’t really lost…
problem: need to know this is an old message
one solution: unique/increasing ID numbers

first prepare message didn’t get to worker 2
solution: resent later (timeout or coordinator recovery)

8

message reordering and assignment
assignment: you need to worry about reordering

connections prevent reordering, but…
RPC system doesn’t prevent it: can use multiple connections

problem: old request seems to fail, but is actually slow

you repeat old request again

later on slow old request reaches machine → must be ignored!

solution: sequence numbers or transactions ID and/or timestamps
some way to tell “this is old”

9

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

10

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

11

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

12

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

12

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

12

TPC: worker fails after prepare (1a)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

on reboot: didn’t record transaction
as if never received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

12

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

13

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

13

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

13

TPC: worker fails after prepare (1b)

coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

PREPARE

AGREE-TO-
COMMIT

COMMIT

coordinator timeout
assignment: coord crash+reboot

recorded in log: agree-to-commit

on reboot: read log
not sure whether decision received

after timeout – coordinator resends
(assignment: coordinator crashes, testing code reboots)
guess: message lost or worker broke

13

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

14

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

15

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

15

TPC: worker fails after prepare (2)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

didn’t have time to log response?

coordinator gives up, votes to abort
doesn’t care about worker 2’s vote anymore

15

worker failure during prepare
worker failure after prepare without sending vote?

option 1: coordinator retries prepare
option 2: coordinator gives up, sends abort
option 3: worker resends vote proactively

16

TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

17

TPC: worker fails after prepare (3)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT

record agree-to-commit

on reboot —
can proactively resend vote

17

network failure after during voting?
network failure during voting ≈ node failure

same options:
coordinator resends PREPARE
coordinator gives up
worker resends vote

18

TPC: network failure (1)
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

19

worker failure during commit
worker failure during commit?

option 1: coordinator resends outcome somehow?
requires acknowledgements from worker
required for assignment

option 2: worker resends vote (coordinator resends outcome)

NB: coordinator cannot give up

20

worker failure during commit
worker failure during commit?

option 1: coordinator resends outcome somehow?
requires acknowledgements from worker
required for assignment

option 2: worker resends vote (coordinator resends outcome)

NB: coordinator cannot give up

21

coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT

could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

22

coordinator resend automatically
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT
could detect missing ACK and resend
but how many times to retry? how long to wait?
would complicate testing

COMMIT

22

twophase assignment recovery
on failure: we’ll restart everything that failed

“crash-oriented computing”: simplifies implementation
you need to handle everything crashing anyways…
so just make that the only way you handle errors

23

logistical note: due date
due Thurs 6 May, not Weds

24

twophase Q and A

25

protection/security
protection: mechanisms for controlling access to resources

page tables, preemptive scheduling, encryption, …

security: using protection to prevent misuse
misuse represented by policy
e.g. “don’t expose sensitive info to bad people”

this class: about mechanisms more than policies

goal: provide enough flexibility for many policies

26

adversaries
security is about adversaries

do the worst possible thing

challenge: adversary can be clever…

27

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

28

authorization v authentication
authentication — who is who

authorization — who can do what
probably need authentication first…

28

authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

29

authentication
password

hardware token

…

this class: mostly won’t deal with how

just tracking afterwards

29

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill

each process belongs
to 1+ protection domains:

“user cr4bd”
“group csfaculty”

…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

30

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

31

user IDs
most common way OSes identify what domain process belongs to:

(unspecified for now) procedure sets user IDs

every process has a user ID

user ID used to decide what process is authorized to do

32

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping

/etc/passwd on typical single-user systems
network database on department machines

33

POSIX user IDs
uid_t geteuid(); // get current process's "effective" user ID

process’s user identified with unique number

kernel typically only knows about number

effective user ID is used for all permission checks

also some other user IDs — we’ll talk later

standard programs/library maintain number to name mapping
/etc/passwd on typical single-user systems
network database on department machines

33

POSIX groups
gid_t getegid(void);

// process's"effective" group ID

int getgroups(int size, gid_t list[]);
// process's extra group IDs

POSIX also has group IDs

like user IDs: kernel only knows numbers
standard library+databases for mapping to names

also process has some other group IDs — we’ll talk later

34

id
cr4bd@power4
: /net/zf14/cr4bd ; id
uid=858182(cr4bd) gid=21(csfaculty)

groups=21(csfaculty),325(instructors),90027(cs4414)

id command displays uid, gid, group list

names looked up in database
kernel doesn’t know about this database
code in the C standard library

35

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

36

groups that don’t correspond to users
example: video group for access to monitor

put process in video group when logged in directly

don’t do it when SSH’d in

…but: user can keep program running with video group
in the background after logout?

36

access control matrix: who does what?

file 1 file 2 process 1
domain 1 read/write
domain 2 read write wakeup
domain 3 read write kill
each process belongs

to 1+ protection domains:
“user cr4bd”

“group csfaculty”
…

objects (whatever type) with restrictions

37

representing access control matrix
with objects (files, etc.): access control list

list of protection domains (users, groups, processes, etc.) allowed to use
each item

list of (domain, object, permissions) stored “on the side”
example: AppArmor on Linux
configuration file with list of program + what it is allowed to access
prevent, e.g., print server from writing files it shouldn’t

38

POSIX file permissions
POSIX files have a very restricted access control list

one user ID + read/write/execute bits for user
“owner” — also can change permissions

one group ID + read/write/execute bits for group

default setting — read/write/execute

(see docs for chmod command)

39

POSIX/NTFS ACLs
more flexible access control lists

list of (user or group, read or write or execute or …)

supported by NTFS (Windows)

a version standardized by POSIX, but usually not supported

40

POSIX ACL syntax
group students have read+execute permissions
group:students:r−x
group faculty has read/write/execute permissions
group:faculty:rwx
user mst3k has read/write/execute permissions
user:mst3k:rwx
user tj1a has no permissions
user:tj1a:−−−

POSIX acl rule:
user take precedence over group entries

41

authorization checking on Unix
checked on system call entry

no relying on libraries, etc. to do checks

files (open, rename, …) — file/directory permissions

processes (kill, …) — process UID = user UID

…

42

keeping permissions?
which of the following would still be secure?

A. setting up a read-only page table entry that allows a process to
directly access its user ID from its process control block in user
mode

B. performing authorization checks in the standard library in
addition to system call handlers

C. performing authorization checks in the standard library instead of
system call handlers

D. making the user ID a system call argument rather than storing it
in the process control block

43

superuser
user ID 0 is special

superuser or root

some system calls: only work for uid 0
shutdown, mount new file systems, etc.

automatically passes all (or almost all) permission checks

44

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

45

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

46

Unix password storage
typical single-user system: /etc/shadow

only readable by root/superuser

department machines: network service
Kerberos / Active Directory:
server takes (encrypted) passwords
server gives tokens: “yes, really this user”
can cryptographically verify tokens come from server

47

aside: beyond passwords
/bin/login entirely user-space code

only thing special about it: when it’s run

could use any criteria to decide, not just passwords
physical tokens
biometrics
…

48

how does login work?
somemachine login: j o
password: ********

jo@somemachine$ l s
...

this is a program which…

checks if the password is correct, and

changes user IDs, and

runs a shell

49

changing user IDs
int setuid(uid_t uid);

if superuser: sets effective user ID to arbitrary value
and a “real user ID” and a “saved set-user-ID” (we’ll talk later)

system starts in/login programs run as superuser
voluntarily restrict own access before running shell, etc.

50

sudo
tj1a@somemachine$ sudo restart
Password: *********

sudo: run command with superuser permissions
started by non-superuser

recall: inherits non-superuser UID

can’t just call setuid(0)

51

set-user-ID sudo
extra metadata bit on executables: set-user-ID

if set: exec() syscall changes effective user ID to owner’s ID

sudo program: owned by root, marked set-user-ID

marking setuid: chmod u+s

52

set-user ID gates
set-user ID program: gate to higher privilege

controlled access to extra functionality

make authorization/authentication decisions outside the kernel

way to allow normal users to do one thing that needs privileges
write program that does that one thing — nothing else!
make it owned by user that can do it (e.g. root)
mark it set-user-ID

want to allow only some user to do the thing
make program check which user ran it

53

uses for setuid programs
mount USB stick

setuid program controls option to kernel mount syscall
make sure user can’t replace sensitive directories
make sure user can’t mess up filesystems on normal hard disks
make sure user can’t mount new setuid root files

control access to device — printer, monitor, etc.
setuid program talks to device + decides who can

write to secure log file
setuid program ensures that log is append-only for normal users

bind to a particular port number < 1024
setuid program creates socket, then becomes not root

54

set-user-ID program v syscalls
hardware decision: some things only for kernel

system calls: controlled access to things kernel can do

decision about how can do it: in the kernel

kernel decision: some things only for root (or other user)

set-user-ID programs: controlled access to things root/… can do

decision about how can do it: made by root/…

55

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

56

a broken setuid program: setup
suppose I have a directory all-grades on shared server

in it I have a folder for each assignment

and within that a text file for each user’s grade + other info

say I don’t have flexible ACLs and want to give each user access

one (bad?) idea: setuid program to read grade for assignment

./print_grade assignment

outputs grade from all-grades/assignment/USER.txt

56

a very broken setuid program
print_grade.c:
int main(int argc, char **argv) {

char filename[500];
sprintf(filename, "all-grades/%s/%s.txt",

argv[1], getenv("USER"));
int fd = open(filename, O_RDWR);
char buffer[1024];
read(fd, buffer, 1024);
printf("%s: %s\n", argv[1], buffer);

}

HUGE amount of stuff can go wrong

examples?

57

set-user ID programs are very hard to write
what if stdin, stdout, stderr start closed?

what if the PATH env. var. set to directory of malicious programs?

what if argc == 0?

what if dynamic linker env. vars are set?

what if some bug allows memory corruption?

…

58

a delegation problem
consider printing program marked setuid to access printer

decision: no accessing printer directly
printing program enforces page limits, etc.

command line: file to print

can printing program just call open()?

59

a broken solution
if (original user can read file from argument) {

open(file from argument);
read contents of file;
write contents of file to printer
close(file from argument);

}

hope: this prevents users from printing files than can’t read

problem: race condition!

60

a broken solution / why
setuid program other user program

create normal file toprint.txt
check: can user access? (yes) —

unlink("toprint.txt")
link("/secret", "toprint.txt")

open("toprint.txt") —
read … —

link: create new directory entry for file
another option: rename, symlink (“symbolic link” — alias for
file/directory)
another possibility: run a program that creates secret file
(e.g. temporary file used by password-changing program)

time-to-check-to-time-of-use vulnerability
61

TOCTTOU solution
temporarily ‘become’ original user

then open

then turn back into set-uid user

this is why POSIX processes have multiple user IDs

can swap out effective user ID temporarily

62

practical TOCTTOU races?
can use symlinks maze to make check slower

symlink toprint.txt → a/b/c/d/e/f/g/normal.txt
symlink a/b → ../a
symlink a/c → ../a
…

lots of time spent following symbolic links when program opening
toprint.txt

gives more time to sneak in unlink/link or (more likely) rename

63

exercise
which (if any) of the following would fix for a TOCTTOU
vulnerability in our setuid printing application? (assume the
Unix-permissions without ACLs are in use)

[A] both before and after opening the path passed in for reading,
check that the path is accessible to the user who ran our application

[B] after opening the path passed in for reading, using fstat with
the file descriptor opened to check the permissions on the file

[C] before opening the path, verify that the user controls the file
referred to by the path and the directory containing it

64

some security tasks (1)
helping students collaborate in ad-hoc small groups on shared
server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

65

some security tasks (2)
letting students assignment files to faculty on shared server?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

66

some security tasks (3)
running untrusted game program from Internet?

Q1: what to allow/prevent?

Q2: how to use POSIX mechanisms to do this?

67

ambient authority
POSIX permissions based on user/group IDs process has

correct user/group ID — can read file
correct user ID — can kill process

permission information “on the side”
separate from how to identify file/process

sometimes called ambient authority

“there’s authorization in the air…”

alternate approach: ability to address = permission to access

68

capabilities
token to identify = permission to access

(typically opaque token)

pro: “what object is this token” check = “can access” check:

simpler?

69

capabilities
token to identify = permission to access

(typically opaque token)

pro: “what object is this token” check = “can access” check:
simpler?

69

some capability list examples
file descriptors

list of open files process has access to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

70

some capability list examples
file descriptors

list of open files process has access to

page table (sort of?)
list of physical pages process is allowed to access

list of what process can access stored with process

handle to access object = key in permitted object table
impossible to skip permission check!

70

sharing capabilities
some ways of sharing capabilities:

inherited by spawned programs
file descriptors/page tables do this

send over local socket or pipe
Unix: usually supported for file descriptors!
(look up SCM_RIGHTS — slightly different for Linux v. OS X v.
FreeBSD v. …)

71

Capsicum: practical capabilities for UNIX (1)
Capsicum: research project from Cambridge

adds capabilities to FreeBSD by extending file descriptors

opt-in: can set process to require capabilities to access objects
instead of absolute path, process ID, etc.

capabilities = fds for each directory/file/process/etc.

more permissions on fds than read/write
execute
open files in (for fd representing directory)
kill (for fd reporesenting process)
…

72

Capsicum: practical capabilities for UNIX (2)
capabilities = no global names

no filenames, instead fds for directories
new syscall: openat(directory_fd, "path/in/directory")
new syscall: fexecv(file_fd, argv)

no pids, instead fds for processes
new syscall: pdfork()

73

backup slides

74

extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

75

extending voting
two-phase commit: unanimous vote to commit

assumption: data split across nodes, every must cooperate

other model: every node has a copy of data

goal: work (including updates!) despite a few failing nodes

just require “enough” nodes to be working

for now — assume fail-stop
nodes don’t respond or tell you if broken

75

assignment: failure types
send RPC and

it gets lost
it gets sent, but acknowledgment/reply is lost
it gets sent, but delayed until after another RPC

76

assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT

coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

77

assignment: fails during prepare
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

ABORT
coordinator crashes from failing to get repsonse
crash happens because RPC call to worker fails
recovers after crash

77

assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT

COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

78

assignment: failuring during commit
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

COMMIT COMMIT
COMMIT not sent successfully → crash
RPC call to get ack of commit fails, coordinator crashes
fix the problem when coordinator restarted

78

aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

79

aside: worker ACKs
coordinator

worker 1

worker 2

PREPARE AGREE-TO-
COMMIT

COMMIT

ack-commit

assignment: worker sends response from COMMIT
(no extra work: Commit is RPC call with return value)
if not received, coordinator knows something wrong

79

TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision

80

TPC: worker revoting
coordinator

worker 1

worker 2

PREPARE

AGREE-TO-
COMMIT

AGREE-TO-
COMMIT

COMMIT COMMIT

record agree-to-commit

on reboot —
resend vote
coordinator resends decision 80

quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

81

quorums (1)
A B C D E

perform read/write with vote of any quorum of nodes

any quorum enough — okay if some nodes fail

if A, C, D agree: that’s enough

B, E will figure out what happened when they come back up

81

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

82

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

82

quorums (2)
A B C D E

requirement: quorums overlap

overlap = someone in quorum knows about every update
e.g. every operation requires majority of nodes

part of voting — provide other voting nodes with ‘missing’ updates
make sure updates survive later on

cannot get a quorum to agree on anything conflicting with past
updates

82

	two-phase commit assignment
	assignment: reordering

	example: worker failure during prepare
	example: network failure losing vote
	setup: worker failure during commit
	example: worker failure during commit (with ACKs)
	protection v security
	security: authentication v authorization
	access matrix/control list
	protection domains?
	POSIX user IDs
	POSIX groups

	access control lists
	file permissions

	authorizaton on Unix
	where checking happens
	exercise: why not check
	superuser
	/bin/login
	sudo/set-user-ID
	set-user-ID programs are hard to write
	aside: TOCTTOU
	exercise
	exercises on POSIX model

	capabilities
	ambient authority v. capability idea
	capability concept

	backup slides
	briefly: distributed consensus
	assignment: ACKs
	aside: worker ACKs
	example: worker failure during commit (without ACKs)
	quorums

