
Fall 2019 CS 4414 Final, Page 1 of 10 Computing ID:

Fill out the bottom of this page with your computing ID.
Write your computing ID at the top of each page in case pages get separated.

On my honor as a student I have neither given nor received aid on this exam.

TPEGS FOOTER HERE rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 2 of 10 Computing ID:

1. In POSIX sockets, sockets used by clients are represented as a file descriptor on which one can call
read() or write().
For these questions, consider using such sockets implemented on top of typical network that uses a
mailbox-like model of communication. Assume the sockets are used in a “stream” mode where they
resemble bidirectional pipes (and not in “datagram” mode POSIX supports which we did not discuss
in lecture).

(a) (5 points) Consider a client program making a write() call on a socket to send a 4096-byte message
to a server program. Which of the following is true about this operation? Select all that apply.

© The client message will transmit the message on the network at most once.
© If the write() call returns successfully, then the server program successfully processed the

message and sent any response
© The server to which the socket is connected will read the message at most once.
© If the write() call successfully writes the entire 4096-byte message, then the server will

read the entire message in one call to read().
© If the write() call returns an error, then the message was not received by the server.

(b) (4 points) Consider two clients, running on different machines, both making write() calls to a socket
connected to the same server process. Assume both of these sockets were created by using connect()
to create connections to the same server address. What is true about how the server can distinguish
between the two messages? Select all that apply.

© when the messages are sent over the network, each client’s socket implementation will include
the address of each client machine (or equivalent information)

© it will read them from different socket file descriptors
© the return value of read() will include the client address
© the client address will be added to the buffer passed to read()

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 3 of 10 Computing ID:

2. (4 points) Consider systems using NFS (Network File System) which has close-to-open consistency
model. Which of the following are sufficient conditions for two clients (on different machines) that
both access a shared file on a single NFS server to observe the same behavior (that is, the same values
being read) that would happen on a local filesystem? Select all that apply.

© clients always wait at least one second between writing the file and reading it
© the two clients always close the file after modifying it
© both clients have caching entirely disabled
© the two clients never have any file open at the same time

3. (5 points) The network filesystem AFS uses callbacks, where a client can register with filesystem server
to be notified when the server’s copy of a file is updated. In contrast, to maintain the same open-to-
close consistency model, NFS requires clients to check with the server each time a file is opened. What
is true about AFS’s callbacks compared to NFS’s alternate strategy to ensure consistency? Select all
that apply.

© AFS’s callbacks more easily handle (without violating the consistency model) cases where
the server crashes and is rebooted

© AFS’s callbacks are likely to lower the number of times clients need to contact the server
© AFS’s callbacks ensure that, even if a another client is modifying its cached copy of the file,

a client will immediately learn about the modifications
© AFS’s callbacks are likely to increase the performance of opening and reading a file on a

client
© AFS’s callbacks are likely to increase the performance of writing and closing an open file on

a client

4. (4 points) Suppose the coordinator in a two-phase commit system restarts after a power failure that
affects the coordinator but not any of the workers. It reads a message in its log that must have been
written just before sending prepare messages to its workers. Which of the following would make most
sense for the coordinator to do next?

© send an ‘agree to commit’ vote to each of the workers
© send a ‘committed’ message to the workers
© discard the transaction the log message is about and wait for the next transaction to be

started
© resend the prepare messages to the workers
© wait for votes (to commit or to abort) from the workers

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 4 of 10 Computing ID:

5. Consider a system which uses the following page replacement policy for its page cache with 3 physical
pages:

• physical pages are kept in an ordered list
• immediately after each page replacement occurs (but before the access that triggered the replace-

ment happens), the physical page used is added to the top of the list and all physical pages are
marked as unaccessed

• whenever a physical page is accessed, it is marked as accessed (if it was not already)
• to choose a page to replace, first, the operating system removes a physical page off the bottom of

the list. Then, if it is unaccessed, it chooses this page. Otherwise, it marks the page as unaccessed
and places it at the top of the list, and repeats this process starting by removing another physical
page from the bottom of the list.

This policy is the same as the second-chance policy we discussed in lecture, except that pages have
their accessed or referenced bit cleared more frequently.

(a) (10 points) Complete the following chart indicating how the replacement policy described above will
execute with the following access pattern. Capital letters represent virtual pages, and the access pattern
lists the order in which the program performs accesses. Assume all physical pages are initially empty.
The first five are done for you.
page accessed required replacement? replaces virtual page
A X (empty)
B X (empty)
C X (empty)
B —
D X A
A
C
B
A
D

(b) (10 points) Give an example of an access pattern where the above policy would perform a different
page replacement than LRU. Identify one page replacement which would differ from an LRU policy.
(If the access pattern from the previous part is an example which differs from LRU, you may use it to
answer this question.)
Write the access pattern as sequence of virtual pages identified by unique letters. Circle a page re-
placement whose outcome will differ.

For the page replacement you circled, identify what will be replaced with LRU and with the policy
specified above:
LRU: ; above policy:

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 5 of 10 Computing ID:

6. Consider a process running on a system with 4KB (212 byte) pages, and two-level page tables where
page tables at each level have 1024 entries and virtual addresses are 32 bits. The process has the
following memory layout:
virtual address range usage
0x00000000-0x00000FFF inaccessible
0x00001000-0x00003FFF code (read-only)
0x00004000-0x00006FFF global variables (read/write)
0x00007000-0x00007FFF heap (read/write)
0x00008000-0x7FFF0FFF inaccessible
0x7FFF1000-0x7FFF2FFF stack (read/write)
0x7FFF3000-0xFFFFFFFF inaccessible

(a) (5 points) Based on the memory layout above, how many pages are accessible?

(b) (5 points) Suppose all the addresses the process can access are loaded into memory and can be accessed
without triggering a page fault. What is the minimum amount of space that must be allocated to store
page tables to allow this? (For this question, ignore page table entries that would be allocated to point
to non-user-accessible operating system memory (like exception handlers).)

(c) Suppose this process forks, and then:
• the child process modifies 8 bytes on the stack at address 0x7FFF1080 through 0x7FFF1088,
• the child process modifies 5120 bytes in a global array at addresses 0x00004F00 through 0x00006300,

and
• the parent process modifies 1024 bytes in a global array at addresses 0x00004F00 through

0x00005300
Assume the operating system uses copy-on-write and that all accessible pages in either the child or
parent process can be read without a page fault.

i. (5 points) How many more pages of data that can be acccesed by the child or parent process must
be allocated compared to how many pages were allocated before forking?

ii. (5 points) How many more pages must be allocated to store additional page tables? (For this
question, ignore space required to store page table entries that would point to operating system
code like exception handlers.)

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 6 of 10 Computing ID:

7. Consider a filesystem which uses redo-logging. A program asks the filesytem to rename a file in a
directory on this filesystem, which requires updating the directory entry for the file to contain a new
name and updating the modification time stored in the directory’s inode. The filesystem uses redo
logging to ensure these two updates occur in a consistent way (so it is not possible for only one of the
updates to appear to be done in the event of a crash).

(a) (4 points) A useful redo-log entry to represent for the update to the directory entry will primarily
include .

© the old (pre-rename) contents of the directory entry for the file and its location on disk
© directory entry representing a symbolic link from the old to new inode
© a new inode number for the file being moved
© the new (post-rename) contents of the directory entry for the file and its location on disk
© none of the above; this update should not appear in the log

(b) (5 points) Suppose the machine unexpectedly loses power, is rebooted when power is restored, and
filesystem redo-logging-based recovery code runs on boot. What must have happened before the ma-
chine lost power for the file to be present under its new name (and not its old one)?

8. (4 points) Suppose we want to allow all users to append to a log file but allow none of them (except
the system administrator) to tamper with the log file. Which of the following are viable mechanisms
for doing this on a POSIX-like system which has support for passing file descriptors between programs?
Select all that apply.

© create a set-user-ID program owned by a system administator user which reads from its
input and appends to the log file, and the log file is set as only writeable by that system
administrator user

© create an access control list for the file which permits all users to write the file, but makes it
not readable by any but the system administrator

© mark the log file as set-user-ID and not writeable by anyone but its owner
© create a directory that is marked as world-writeable and have a special program (run by the

system administrator) periodically append the contents of files users write in that directory
to the log file (located in another directory and only writeable by the system administrator
user)

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 7 of 10 Computing ID:

9. Suppose we knew that an inode-based filesystem with a similar design to the xv6 filesystem has:
• no support for fragments or extents or similar
• 4KB blocks
• 4 byte block pointers
• an indirect and double-indirect pointer in each inode

and is used to store only:
• 50 000 1KB files
• 50 000 4KB files
• 2 000 16KB files
• 200 128KB files; and
• 10 8MB files

(where 1KB is 210 bytes and 1MB is 220 bytes.) For each of the questions below, you may leave your
answers as unsimplified arithmetic expressions.

(a) (5 points) If there were 100 direct pointers per inode, then how many blocks would be allocated to
store pointers to other blocks?

(b) (6 points) if there were 100 direct pointers per inode, then how much space would be used for direct
block pointers that did not point to anything within the inodes allocated to the files specified above?

(c) (8 points) What number of direct pointers per inode would result in the least space being allocated to
store information related to the location of data for files? Count both blocks allocated to store block
pointers and space in used inodes dedicated to store block pointers (regardless of whether they actually
contain a valid block pointer). Don’t worry about space in inodes that are not assigned to any file
mentioned above. Assume it is not possible for inodes to have variable numbers of direct pointers.

(d) (4 points) Given the number of direct pointers you specified above, how many blocks outside of in-
odes would be allocated to store pointers to blocks? (You may leave your answer as an unsimplified
arithmetic expression.)

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 8 of 10 Computing ID:

10. Consider a hypervisor (also known as a virtual machine monitor) that:
• uses a trap-and-emulate strategy;
• use shadow page tables to implement virtual memory (without any special hardware support for

virtual machine page tables);
• fills in shadow page table entries on demand (that is, in response to page faults on the underlying

hardware, rather than trying to detect modifications to page table entries directly); and
• maintains two versions of the shadow page table, one for the guest OS kernel and one for the guest

OS’s user mode, and, whenever it modifies the shadow page tables, modifies both versions
The guest operating system has not been modified to run on the virtual machine monitor (so it runs
the same code that would run on real hardware).
Consider the following scenario: The guest operating system is running a process. The process tries
to access a virtual page which will be allocated on demand. The guest operating system allocates a
physical page from its page fault handler, then resumes the process. Immediately after being resumed,
the process writes a value to the newly allocated page.

(a) (6 points) Suppose the page table entry the guest OS writes to its page table as a result of the
allocation-on-demand is:

• be located at the index in the page table corresponding to page number 100
• and contains page number 50

and that a partial mapping between guest OS’s physical pages and the underlying hardware’s machine
(physical) addresses is:
physical (from guest OS’s view) page machine (hardware physical) page
50 500
100 501

The corresponding shadow page table entry for the guest OS’s user mode should (fill in the blanks
below):

• be located at the index in the page table corresponding to page number .
• and contain page number .

(b) (10 points) What exceptions (of all kinds, including traps, interrupts, etc.) will occur as part of this
process on the real hardware? Identify them briefly.

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 9 of 10 Computing ID:

11. (25 points) Consider using monitors (mutexes and condition variables) to build a map (hashtable-like
key/value data structure) that has support for waiting for a particular key to be inserted. The hashtable
provides the following operations:

• void Put(string key, string value)
• string WaitForAndGetValue(string key)

Calling WaitForAndGetValue(key) should return immediately if key has already been set at least
once, otherwise it should wait for a call to Put for key to complete and then return the value set.
On the next page, complete the implementation of this in terms of the C++ standard library
map<Key, Value> type which provides the following relevant methods:

• void insert(Key key, Value value) — insert the key/value pair (key, value)
• at(Key key) — retrieve the value with key key
• contains(Key key) — return true if a key is present, false otherwise

The implementation uses a ValueHolder struct to hold both a string value and relevant metadata.
In our reference solution, we added a field that struct to implement Put and WaitForAndGetValue.
The implemention also has a utility function GetHolderForKey which retreives a ValueHolder object
and is responsible for allocating and initializing it, if necessary.
If you don’t know the exact name or syntax for a pthreads API function you require, make a rea-
sonable guess. We will not take off points for minor syntax errors or differences in names/argument
order/whether arguments are pointers/etc.

rev. 2020-02-09 16:38:41-05:00



Fall 2019 CS 4414 Final, Page 10 of 10 Computing ID:

struct ValueHolder {
string value;
pthread_cond_t cv;

_______________________________________________________
};
pthread_mutex_t lock;
map<string, ValueHolder*> internal_map;

ValueHolder *GetHolderForKey(string key) {
if (!internal_map.contains(key)) {

ValueHolder* holder = new ValueHolder;

____________________________________________________
pthread_cond_init(&holder−>cv, NULL);
internal_map.insert(key, holder);

}
return internal_map.at(key);

}

void Put(string key, string value) {
pthread_mutex_lock(&lock);
ValueHolder *holder = GetHolderForKey(key);
holder−>value = value;

____________________________________________________

____________________________________________________
pthread_mutex_unlock(&lock);

}

string WaitForAndGetValue(string key) {
pthread_mutex_lock(&lock);
ValueHolder *holder = GetHolderForKey(key);

_____________________________________________________

_____________________________________________________

_____________________________________________________
string result = holder−>value;
pthread_mutex_unlock(&lock);
return result;

}

rev. 2020-02-09 16:38:41-05:00


