Spring 2020 CS 4414 Final, Page 1 of 9

Write the answers this exam by filling in the blanks in the answersheet. txt file provided.

Write the honor pledge at the top of the answer sheet.

You may look at notes, textbooks, lectures slides, and general Internet resources about course
topics (for example, slides and lecture notes from other OS courses, Linux manual pages,
references for the POSIX API, technical papers and presentations) when completing this exam,
but you may not search for answers to specific questions (e.g. by copy-and-pasting the question
into a search engine though we suspect that would usually be ineffective), ask questions of others
(including via instant message, Stack Overflow, etc.), receive personal tutoring, etc.

If you think a question is unclear, ambiguous, etc. do not try to contact us about this during the
exam. Instead, explain why on your answersheet and make your best guess as to what was
intended.

When you are done, upload your answer sheet text file to kytos by 6 PM eastern time on 5 May
2020. (You can submit multiple times; we will grade your last submission.)

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 2 of 9

1. Suppose an operating system has a page cache with 6 physical pages and an LRU replacement policy.
These page cache is used by exactly two processes with the following repeating access patterns (where
A, B, C, etc. represent physical pages);

Processl: ABCDABCDABCDABCD ..
Process2: EFGEFGEFGEFGEFG ..

Initially:

o process 1 is running and its pages (A, B, C, D) are loaded into the page cache; the remaining
pages in the page cache are empty

Then process 2 starts running, and the system executes the two processes as follows:

o when no page replacements are required, processes perform one page access per time unit;

e when a page replacements is required, it takes 4 time units in addition to the time required for
the actual access to the page (to perform the relevant 1/0), during which another process will
be allowed to run;

e when switching away from a process to perform page replacement, the process gives up any
remaining time in its time quantum. After it completes it pages replacement, the scheduler will
run it again when another process gives up or completes its time quantum (or if there are no
other runnable processes).

e processes are run in a round-robin fashion with 12 time unit time quantums;

o only one page replacement can occur at a time; if a second page replacement is required while
one is in progress, it will wait until the first one completes;

o the context switching overhead is neglible

Because the two processes’ working sets together are larger than the available physical memory, it is
likely that the processes will not be able to run efficiently due to limited memory available.

(a) (10 points) Over the long run, about what amount of CPU time will each process get? Explain
briefly.

(b) (6 points) Suppose we decreased the time quantum for the round-robin scheduling to 4 time
units. How would this change the amount of CPU time each process gets? Explain briefly.

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 3 of 9

2. A device controller for a hard drive exposes memory-mapped control registers containing the following

e a memory-mapped control register indicating whether to perform a read or write operation next
a memory-mapped writable list of up to 30 eight-byte sector numbers

a memory-mapped writable list of up to memory addresses to use as a buffer for each of the 30
sectors

read-only memory mapped control registers for the controller to specify whether any pending
I/O operation is complete

a writable memory-mapped control regsiter that when written starts a read or write operation
for all the valid sector numbers in the list

Whenever an 1/O operation completes, the hard drive controller triggers an interrupt. Since up to
30 sectors can be specified in the control registers, an I/O operation can be a read or write of up to
30 sectors. Only one I/O operation can be performed at a time.

Consider an operating system using this hard drive along with a page cache where pages are 4096
bytes and sectors on the disk are also 4096 bytes.

Suppose an application running on this OS reads a 40 page file from beginning to end using mmap
and the entire file is not cached. The application accesses each byte of the file once in a loop, and
no other activity being performed on the OS (by any application) requires disk 1/0.

(a)

i.

ii.

iii.

iv.

ii.

(5 points) Assume the operating system does not perform readahead, so it only reads the
pages in on demand. How many I/O operations will it trigger on the device?

(4 points) If the operating system does not perform readahead, it will most likely start the
read operation from:
A. code run in userspace (outside of an exception/fault/trap handler) in the application

a page fault handler triggered by writing a read-only page
an interrupt handler triggered by the disk controller
a system call handler

=0 aw

a page fault handler triggered by reading or writing an invalid page
F. a timer interrupt handler

(4 points) If the operating system does not perform readahead, it will most likely determine
whether the read operation was successful from
A. a timer interrupt handler

code run in userspace (outside of an exception/fault/trap handler) in the application
an interrupt handler triggered by the disk controller
a page fault handler triggered by writing a read-only page

=0 aw

a system call handler

F. a page fault handler triggered by reading or writing an invalid page
(3 points) After starting one of the I/O operations from the previous part (and before the
I/O operation completes), what would make most sense for the operating system to do?
(5 points) Suppose the operating system does perform readahead. What is the minimum
number I/O operations it could perform on the device?

(3 points) After starting one of the 1/O operations triggered by readahead (and before the
I/0O operation completes), what would make most sense for the operating system to do?

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 4 of 9

3. Consider the following filesystem designs:

o Filesystem A: an inode-based filesystem where

— the block size is 4096 bytes

— block pointers are four bytes

— inodes contain 12 direct block pointers

— inodes contain 1 indirect block pointer

— inodes contain 1 double-indirect block pointer

— inodes contain 1 triple-indirect block pointer

— block groups are used, where each block group has 8192 data blocks and 256 inodes
— directory entries are 64 bytes

— there is no support for fragments or extents

e Filesystem B: same as A, but with 2048 byte blocks
e Filesystem C: same as A, but with 8192 byte blocks and support for fragments as follows:

(a)

— fragments are 2048 bytes

— a file less than or equal to a fragment in size can be stored in a single fragment

— files greater than a fragment in size must use at least one block (even if they could use less
space if it were possible to store them using fragments)

Give an example where each of the filesystems described above would require less bytes of data

blocks than each of the other designs, assuming that data blocks are allocated in the most
space-efficient way possible for each filesystem.

When counting the number of bytes of data blocks, do not include inodes, free block maps,
superblocks, etc., but do count all the bytes of any data blocks which are partially used (e.g. if
only half the block contains useful information). Also count any data blocks (outside of inodes)
allocated to store block pointers.
Describe your example and calculate much space would be used with each filesystem above.
(Please show your calculations so we can give appropriate partial credit.)

i. (8 points) Filesystem A:

ii. (8 points) Filesystem B:

iii. (8 points) Filesystem C:
(4 points) When using block groups, a goal is to contain the data and metadata for a directory
and its files within one block group. In filesystem A, if it used block groups, which of the
following could have its data and metadata contained within one block group? Select all that
apply. Select all that apply.

A. a directory of 200 files, each of which is 165000 bytes

a directory of 300 files, each of which is 100000 bytes
a directory of 10000 empty (zero-length) files
a directory of 150 files, each of which is 217000 bytes

oaw

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 5 of 9

4. A system uses two-phase commit for a distributed database that holds information about product
inventories and orders. The information is split up so machine A stores the product inventories and
machine B stores the orders.

To dispatch an order, a transaction will update both machine A and machine B using two-phase
commit.

For the questions below, suppose two transactions occur at the same time. Each of these transactions
has a different coordinator machines C and D, but in both transactions machine A and machine B
are involved as workers.

Both transactions involve marking the last unit of inventory for a product on machine A as used,
and therefore it is not possible for both to complete.

(a) (b points) If machine C has received an agreement to commit from machines A and B, then
which of the following statements could be true? Select all that apply.

A. machine D, performing its transaction concurrently, may receive an agreement to commit
from machine B

B. machine D’s transaction may abort

C. if machine C fails before telling machine A and B to commit or abort the transaction,
then, before machine C recovers from its failure, machine D could end up committing its
transaction

D. machine D, performing its transaction concurrently, may receive an agreement to commit
from machine A

E. machine C may tell machine A and B to commit the transaction

(b) (5 points) If machine C sends a message to commit to machines A and B, then which of the
following statements could be true? Select all that apply.
A. if machine C becomes totally unreachable after A and B receive the message to commit,
then machines A and B can still commit the transaction

B. if machine C crashes and reboots and is not able to get any acknowledgment afterwards
from machine A or B (despite multiple attempts to do so), it can send a message to abort
to machines A and B

C. if machine C’s message to commit is not received by machines A and B and machine C
is not able to get any acknowledgment from machine A or B (despite multiple attempts
to do s0), it can send a message to abort to machines A and B

D. if machine A crashes before receiving the message from machine C, then machine B will
not be able to commit until machine A reboots

E. if machine A crashes after recording the message to commit from C in its log but before
machine A performs the updates for the transaction, then machine B will not be able to
commit until machine A reboots

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 6 of 9

(c) (5 points) Suppose machine C has receives an agreement to commit from machines A and B,
and immediately after this, all of machines A, B, and C crash and are rebooted. The machines
perform recover using their logs. What could happen during this recovery? Select all that
apply.

A. machine A has no record of the transaction after it is rebooted until it is informed about
it again by machine C’s recovery code

B. machine C asks machine A and machine B for their votes (agree to commit or agree to
abort) again, even though it received them before the crash

C. if machine D contacts machine A after rebooting before machine C does, then machine
A will perform machine D’ s transaction even though it conflicts with machine C’s trans-
action

D. machine C aborts the transaction

E. machine A receives a message from machine D asking it to perform a conflicting operation
and so decides to abort the traction being performed by machine C

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 7 of 9

5. Suppose a virtual machine is implemented using the trap-and-emulate strategy we discussed in lecture
and using shadow page tables filled in on demand (in response to page faults) like we discussed in
lecture. The following occurs:

A program running in the guest OS on the virtual machine uses a system call to send a message on
the network and then uses another system call to receive a reply to this message.

To implement sending and receiving messages, the guest OS sets up a buffer in its memory on behalf
of the program. The guest OS determines what would be the physical address of the buffer if the
guest OS were not running in a virtual machine. Then it writes that address to a control register on
the emulated network device controller. After doing this, the emulated network controller triggers
an interrupt in the guest OS to indicate that receiving or sending the message is complete.

(a) (8 points) What operations involved in the program in the guest OS sending and receiving
messages over the network involve exceptions (of any kind, including interrupts, traps, etc.) on
the real hardware (that is, in the host OS), which would not require exceptions if the guest OS
were running directly on the hardware (that is, outside of a virtual machine)?

(b) (4 points) To emulate the network device controller, the virtual machine needs to read or write
from the buffer location specified by the guest OS. How should it do this?

A. by triggering a page fault in the guest OS to perform the translation from the buffer
location to a usable address

B. by looking up the buffer location in the hypervisor’s mapping from guest OS physical
addresses to machine (host OS physical) addresses, then adding that physical address to
a page table entry in the host OS and accessing the virtual address corresponding to the
added page table entry

C. by dereferencing a pointer containing the buffer location while the shadow page table is
active (filling in a new shadow page table entry, if necessary)

D. by looking up the buffer location in the hypervisor’s mapping from guest OS physical
addresses to machine (host OS physical) addresses, then dereferencing a pointer with
that address within the host OS kernel

E. by looking up the buffer location in the guest page table, and accessing the address con-
tained in the guest page table in the host OS kernel by dereferencing a pointer containing
that address

6. (5 points) Which of the following are appropriate strategies for an Unix-like operating system to
enforce access control lists when a process attempts to open a file? Select all that apply.

A. have the system call wrapper for open() mark the file to be opened as set-user-ID and attempt
to execute it before trying to open() it

B. check the access control list in the system call wrapper for open() included in the standard
library

C. have the system call handler for open() in the kernel require the process to pass a file descriptor
for the directory containing the file in order to open the file

D. add an extra user and group ID argument to the open() system call, and use it to check the
access control list in the system call handler in the kernel

E. check the access control list in the system call handler in the kernel using a user and group
ID included in the process control block

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 8 of 9

7. (20 points) Suppose we want to implement a thread pool that dynamically adjusts the number of
threads it runs. To do this, it supports the following interface:

class Task {
public:
virtual void Run() = 0;
b5
void SubmitTask(Task *task);
void SetNumberOfThreads(int number);

SubmitTask submits a new task to the thread pool, calling its run method, and SetNumberOfThreads()
adjusts the number of threads in the thread pool, either starting new threads or waiting for them as
necessary. Initially the number of threads is 0. Supply the contents of the blanks in the incomplete
implementation shown on the next page:

(Assume all necessary headers and forward declarations are included. Ignore minor syntax errors.)

rev. 2020-05-03C



Spring 2020 CS 4414 Final, Page 9 of 9

int activeThreadCount = 0; int targetThreadCount = 0;
std: :deque<Task*> tasks;

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t queue_wait_cv = PTHREAD_COND_INITIALIZER;
pthread_cond_t finish_cv = PTHREAD_COND_INITIALIZER

void SubmitTask(Task *task) {
pthread_mutex_Tlock(&lock) ;
tasks.push_back(task);
(btank 1:1 ___
pthread_mutex_unlock(&lock) ;

}

void SetNumberOfThreads(int newCount) {
pthread_mutex_lock(&lock) ;
targetThreadCount = newCount;
[blank 2:]

while (activeThreadCount < targetThreadCount) {
pthread_t thread;
pthread_create(&thread, NULL, RunThread, NULL);
pthread_detach(thread);
activeThreadCount += 1;

}

pthread_mutex_unlock(&lock) ;

}

void *RunThread(void *ignored_argument) {
while (true) {

pthread_mutex_lock(&lock) ;

while ([blank 3:1 _______ @ ) {
pthread_cond_wait(&queue_wait_cv, &lock);

+

if (activeThreadCount <= targetThreadCount) {
activeThreadCount -= 1;
[blank 4:]

Task *t = tasks.front();
tasks.pop_front();
pthread_mutex_unlock(&lock) ;
t->Run();

}

return NULL;

}

rev. 2020-05-03C



