
context switches / process API

1

last time
system call implementation in xv6

system call wrapper
interrupt table AKA exception table initialization
many exception handlers that all call trap()
using saved trap type/registers to decide operation
OS chooses system calling convention
xv6: system calls borrow from normal calling convention

briefly, handling other exceptions in trap()

thread context switches at a high level
context = register values + program counter + address space
swap context between processor and OS storage

trick: trapframe (saved regs on trap) ∼ user-mode part of context
2

quiz demo

3

exercise: counting context switches/syscalls
two active processes:

A: running infinite loop
B: described below

process B asks to read from from the keyboard

after input is available, B reads from a file

then, B does a computation and writes the result to the screen

how many context switches do we expect?

how many system calls do we expect?
your answers can be ranges

4

counting system calls
(no system calls from A)

B: read from keyboard
maybe more than one — lots to read?

B: read from file
maybe more than one — opening file + lots to read?

B: write to screen
maybe more than one — lots to write?

(3 or more from B)

5

counting context switches
B makes system call to read from keyboard

(1) switch to A while B waits

keyboard input: B can run

(2) switch to B to handle input

B makes system call to read from file
(3?) switch to A while waiting for disk?

if data from file not available right away

(4) switch to B to do computation + write system call

+ maybe switch between A + B while both are computing?
6

xv6 context switch
application A application B

interrupt table
some exception

assembly function: vector32assembly: vector?? assembly: vector??
save (A user) regs

(trapframe)
and call

hardware calls (switching stacks)

C function: trap()
dispatch via saved trapno

C function: yield() C function: ???

asm function: swtch()
save (A kernel) regs
on A kernel stack

restore (B kernel) regs
from B kernel stack

restore (B user) regs
(trapframe)

and call

return from interrupt instruction
hardware switches stacks

... ...

using
A’s

user
stack

using
B’s
user
stack

using
A’s

kernel
stack

using
B’s
kernel
stack

8

xv6 context switch
application A application B

interrupt table
timer interrupt

assembly function: vector32assembly: vector?? assembly: vector??
save (A user) regs

(trapframe)
and call

hardware calls (switching stacks)

C function: trap()
dispatch via saved trapno

C function: yield() C function: ???

asm function: swtch()
save (A kernel) regs
on A kernel stack

restore (B kernel) regs
from B kernel stack

restore (B user) regs
(trapframe)

and call

return from interrupt instruction
hardware switches stacks

... ...

using
A’s

user
stack

using
B’s
user
stack

using
A’s

kernel
stack

using
B’s
kernel
stack

8

xv6 context switch on timer interrupt
application A application B

interrupt table
timer interrupt

assembly function: vector32assembly: vector32 assembly: vector??
save (A user) regs

(trapframe)
and call

hardware calls (switching stacks)

C function: trap()
dispatch via saved trapno

C function: yield() C function: ???

asm function: swtch()
save (A kernel) regs
on A kernel stack

restore (B kernel) regs
from B kernel stack

restore (B user) regs
(trapframe)

and call

return from interrupt instruction
hardware switches stacks

... ...

using
A’s

user
stack

using
B’s
user
stack

using
A’s

kernel
stack

using
B’s
kernel
stack

8

preview: thread/process control block
need to have pointer to saved regs for thread

and (we’ll see later) more info about threads

thread control block
term for struct/class with this information

also process control blocks
xv6: struct proc
xv6: doubles as thread control block
(because each process has exactly one thread)

9

preview: thread/process control block
need to have pointer to saved regs for thread

and (we’ll see later) more info about threads

thread control block
term for struct/class with this information

also process control blocks
xv6: struct proc
xv6: doubles as thread control block
(because each process has exactly one thread)

9

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

11

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

11

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A

memory accessable
when running process A
(= address space)

11

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

11

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

12

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

12

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

12

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

12

swtch prototype
void swtch(struct context **old, struct context *new);

save current context into *old

start running context from new

trick: struct context* = thread’s stack pointer

top of stack contains saved registers, etc.

13

swtch prototype
void swtch(struct context **old, struct context *new);

save current context into *old

start running context from new

trick: struct context* = thread’s stack pointer

top of stack contains saved registers, etc.

13

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

14

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

14

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

14

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

14

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

14

thread switching in xv6: C
in thread A:
/* switch from A to B */

... // (1)
swtch(&(a−>context), b−>context); /* returns to (2) */
... // (4)

in thread B:
swtch(...); // (0) -- called earlier
... // (2)
...
/* later on switch back to A */
... // (3)
swtch(&(b−>context), a−>context) /* returns to (4) */
...

14

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →

SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →

SP →

SP →
struct context

(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →

SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →

SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →

SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →

SP →

SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →

SP →

SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →

SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

15

thread switching in xv6: how?
swtch(A, B) pseudocode:

save A’s caller-saved registers to stack
write swtch return address to stack (x86 call)
write all A’s callee-saved registers to stack
save old stack pointer into arg A
read B arg as new stack pointer
read all B’s callee-saved registers from stack
read+use swtch return address from stack (x86 ret)
restore B’s caller-saved registers from stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

old (A) stack

…
caller-saved registers
swtch arguments
swtch return addr.
callee-saved registers

new (B) stack

SP →
SP →
SP →

struct context
(saved into A arg)

SP →
SP →
SP →
SP →

saved user regs
old (A) stack

saved user regs
new (B) stack

most work done by compiler — part of function call

16

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax // eax ← M[esp+4]
movl 8(%esp), %edx // edx ← M[esp+8]

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax) // M[eax] ← esp
movl %edx, %esp // esp ← edx

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch
save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

17

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax // eax ← M[esp+4]
movl 8(%esp), %edx // edx ← M[esp+8]

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax) // M[eax] ← esp
movl %edx, %esp // esp ← edx

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch
save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

17

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax // eax ← M[esp+4]
movl 8(%esp), %edx // edx ← M[esp+8]

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax) // M[eax] ← esp
movl %edx, %esp // esp ← edx

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, edi

other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch
save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

17

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax // eax ← M[esp+4]
movl 8(%esp), %edx // edx ← M[esp+8]

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax) // M[eax] ← esp
movl %edx, %esp // esp ← edx

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, edi

other parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

17

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax // eax ← M[esp+4]
movl 8(%esp), %edx // edx ← M[esp+8]

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax) // M[eax] ← esp
movl %edx, %esp // esp ← edx

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch

save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

17

thread switching in xv6: assembly
.globl swtch
swtch:

movl 4(%esp), %eax // eax ← M[esp+4]
movl 8(%esp), %edx // edx ← M[esp+8]

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax) // M[eax] ← esp
movl %edx, %esp // esp ← edx

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

two arguments:
struct context **from_context
= where to save current context
struct context *to_context
= where to find new context

context stored on thread’s stack
context address = top of stack

callee-saved registers: ebp, ebx, esi, ediother parts of context?
eax, ecx, …: saved by swtch’s caller
esp: same as address of context
program counter: saved by call of swtch
save stack pointer to first argument
(stack pointer now has all info)
restore stack pointer from second argument

restore program counter
(and other saved registers)
from stack of new thread

17

the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

other code (not shown) handles setting address space

18

the userspace part?
user registers stored in ‘trapframe’ struct

created on kernel stack when interrupt/trap happens
restored before using iret to switch to user mode

other code (not shown) handles setting address space

18

xv6 context switch on timer interrupt
application A application B

interrupt table
timer interrupt

assembly function: vector32assembly: vector32 assembly: vector??
save (A user) regs

(trapframe)
and call

hardware calls (switching stacks)

C function: trap()
dispatch via saved trapno

C function: yield() C function: ???

asm function: swtch()
save (A kernel) regs
on A kernel stack

restore (B kernel) regs
from B kernel stack

restore (B user) regs
(trapframe)

and call

return from interrupt instruction
hardware switches stacks

... ...

using
A’s

user
stack

using
B’s
user
stack

using
A’s

kernel
stack

using
B’s
kernel
stack

19

missing pieces
showed how we change kernel registers, stacks, program counter

not everything:

trap handler saving/restoring registers:
before swtch: saving user registers before calling trap()
after swtch: restoring user registers after returning from trap()

changing address spaces: switchuvm
changes address translation mapping
changes stack pointer for HW to use for exceptions

still missing: starting new thread?

20

missing pieces
showed how we change kernel registers, stacks, program counter

not everything:

trap handler saving/restoring registers:
before swtch: saving user registers before calling trap()
after swtch: restoring user registers after returning from trap()

changing address spaces: switchuvm
changes address translation mapping
changes stack pointer for HW to use for exceptions

still missing: starting new thread?
20

exercise
suppose xv6 is running this loop.exe:
main:

mov $0, %eax // eax ← 0
start_loop:

add $1, %eax // eax ← eax + 1
jmp start_loop // goto start_loop

when xv6 switches away from this program, where is the value of
loop.exe’s eax stored?
A. loop.exe’s user stack E. loop.exe’s heap
B. loop.exe’s kernel stack F. a special register
C. the user stack of the program switched to G. elsewhere
D. the kernel stack for the program switched to

21

exercise (alternative)
suppose xv6 is running this loop.exe:
main:

mov $0, %eax // eax ← 0
start_loop:

add $1, %eax // eax ← eax + 1
jmp start_loop // goto start_loop

when xv6 switches away from this program, where is the value
loop.exe’s program counter had when it was last running in user
mode stored?
A. loop.exe’s user stack E. loop.exe’s heap
B. loop.exe’s kernel stack F. a special register
C. the user stack of the program switched to G. elsewhere
D. the kernel stack for the program switched to

22

first call to swtch?
one thread calls swtch and

…return from another thread’s call to swtch

…using information on that thread’s stack

what about switching to a new thread?

trick: setup stack as if in the middle of swtch
write saved registers + return address onto stack

avoids special code to swtch to new thread
(in exchange for special code to create thread)

23

first call to swtch?
one thread calls swtch and

…return from another thread’s call to swtch

…using information on that thread’s stack

what about switching to a new thread?

trick: setup stack as if in the middle of swtch
write saved registers + return address onto stack

avoids special code to swtch to new thread
(in exchange for special code to create thread)

23

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

24

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

24

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

24

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returns

initial code to run
when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

24

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returns

initial code to run
when starting a new process

(fork = process creation system call)

saved registers (incl. return address)
for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

24

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)

saved registers (incl. return address)
for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

24

creating a new thread
static struct proc*
allocproc(void)
{

...
sp = p−>kstack + KSTACKSIZE;

// Leave room for trap frame.
sp −= sizeof *p−>tf;
p−>tf = (struct trapframe*)sp;

// Set up new context to start executing at forkret,
// which returns to trapret.
sp −= 4;
(uint)sp = (uint)trapret;

sp −= sizeof *p−>context;
p−>context = (struct context*)sp;
memset(p−>context, 0, sizeof *p−>context);
p−>context−>eip = (uint)forkret;
...

struct proc ≈ process
p is new struct proc
p−>kstack is its new stack
(for the kernel only)

‘trapframe’
(saved userspace registers

as if there was an interrupt)

return address = trapret
(for forkret)

return address = forkret
(for swtch)

saved kernel registers
(for swtch)

new kernel stack

assembly code to return to user mode
same code as for syscall returnsinitial code to run

when starting a new process

(fork = process creation system call)
saved registers (incl. return address)

for swtch to pop off the stack

new stack says: this thread is
in middle of calling swtch

in the middle of a system call

24

process control block
some data structure needed to represent a process

called Process Control Block

xv6: struct proc

25

process control block
some data structure needed to represent a process

called Process Control Block

xv6: struct proc

25

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

26

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

26

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

26

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

26

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

26

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

26

xv6: struct proc

struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

pointers to current registers/PC of process (user and kernel)
stored on its kernel stack
(if not currently running)

≈ thread’s state

the kernel stack for this process
every process has one kernel stack

is process running?
or waiting?
or finished?
if waiting,
waiting for what (chan)?

enum procstate {
UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE

};

process ID
to identify process in system calls

information about address space
pgdir — used by processor
sz — used by OS only

information about open files, etc.

26

process control blocks generally
contains process’s context(s) (registers, PC, …)

if context is not on a CPU
(in xv6: pointers to these, actual location: process’s kernel stack)

process’s status — running, waiting, etc.

information for system calls, etc.
open files
memory allocations
process IDs
related processes

27

xv6 myproc
xv6 function: myproc()

retrieves pointer to currently running struct proc

28

myproc: using a global variable
struct cpu cpus[NCPU];

struct proc*
myproc(void) {
struct cpu *c;
...
c = mycpu(); /* finds entry of cpus array

using special "ID" register
as array index */

p = c−>proc;
...
return p;

}

29

backup slides

30

timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

31

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

32

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

33

write syscall in xv6: summary
write function — syscall wrapper uses int $64
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
38

write syscall in xv6: summary
write function — syscall wrapper uses int $64
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
39

write syscall in xv6: summary
write function — syscall wrapper uses int $64
interrupt table entry setup points to assembly function vector64

(and switches to kernel stack)

…which calls trap() with trap number set to 64 (T_SYSCALL)
(after saving all registers into struct trapframe)

…which checks trap number, then calls syscall()

…which checks syscall number (from eax)

…and uses it to call sys_write

…which reads arguments from the stack and does the write

…then registers restored, return to user space
40

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp

struct context
(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp →

← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp

← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp

← %esp

← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

41

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp

← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

42

juggling stacks
.globl swtch
swtch:

movl 4(%esp), %eax
movl 8(%esp), %edx

Save old callee-save registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stacks
movl %esp, (%eax)
movl %edx, %esp

Load new callee-save registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

from stack
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

to stack

%esp →

%esp → ← %esp
struct context

(saved into from arg)

← %esp
← %esp
← %esp

first instruction
executed by new thread

bottom of
new kernel stack

saved user regs
…

from stack
saved user regs
…

to stack

43

kernel-space context switch summary
swtch function

saves registers on current kernel stack
switches to new kernel stack and restores its registers

(later) initial setup — manually construct stack values

44

struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counterfunction to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

45

struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counterfunction to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

45

struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counter

function to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

45

struct context
struct context {
uint edi; /* <-- top of stack of this thread */
uint esi;
uint ebx;
uint ebp;
uint eip; /* <-- return address of swtch() */
/* not in struct but stored on stack thread after eip:

arguments to current call to swtch
caller-saved registers
call stack include call to trap() function
user registers

*/
}

void swtch(struct context **old, struct context *new);

structure to save context in
only includes callee-saved registers
rest is saved on stack before swtch involved

eip = saved program counter

function to switch contexts
allocate space for context on top of stack
set old to point to it
switch to context new

45

xv6: where the context is
‘A’ process
address space

‘B’ process
address space

kernel-only memory

…
‘A’ user stack

A’s saved user registers
…
A’s saved kernel registers

‘A’ kernel stack

A’s kernel stack pointer
…

‘A’ struct proc

…
‘B’ user stack

B’s saved user registers
…
B’s saved kernel registers

‘B’ kernel stack

B kernel stack pointer
…

‘B’ struct proc

save/restore
on trap()
entry/exit

(trapframe)

save/restore
on swtch()

args to swtch()

memory used to run
process A
memory accessable
when running process A
(= address space)

46

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

47

xv6: where the context is (detail)

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘from’ kernel stack

last %esp value
for ‘from’ process
(saved by swtch)

main’s return addr.
main’s vars
…

‘from’ user stack

%esp before
exception

saved user registers
trap return addr.
…
caller-saved registers
swtch arguments
swtch return addr.
saved ebp
saved ebx
saved esi
saved edi

‘to’ kernel stack

first %esp value
for ‘to’ process
(arg to swtch)

main’s return addr.
main’s vars
…

‘to’ user stack

%esp after
return-from-

exception

kernel
memory

(shared between
all processes)

saved in
‘from’ struct proc

retrieved via
‘to’ struct proc

48

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

49

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

50

xv6 context switch and saving
user mode kernel mode

running A

running B

start trap handler
save A’s user regs

to kernel stack

swtch() — switch kernel stacks/kernel registers

exit trap handler
restore B’s user regs

from kernel stack

when saving user registers here…
haven’t decided whether to context switch

use kernel stack to avoid disrupting user stack
what if no space left? what if stack pointer invalid?

call swtch() in A; return from swtch() in B

51

	last time
	counting context switches
	xv6 kernel context switches
	overview
	xv6 context location summary
	swtch()
	swtch function: semantics
	swtch function: context format
	swtch function: assembly

	user part
	overall view / missing pieces

	exercise: infinite loop switch storage location
	xv6: thread creation
	process control blocks (intro)
	backup slides
	setup: infinite loop
	swtch function: stack juggling
	swtch summary?
	struct context
	xv6 context location detail
	alternate xv6 context switch diagram

