
POSIX API 2

1



last time
POSIX – standard for Unix

fork: process creation via cloning
new process called “child”; original called “parent”
return child pid in parent; 0 in child

exec*: run different program in current process

waitpid: wait for child

2



POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

3



POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

4



wait/waitpid
pid_t waitpid(pid_t pid, int *status,

int options)

wait for a child process (with pid=pid) to finish

sets *status to its “status information”

pid=-1 → wait for any child process instead

options? see manual page (command man waitpid)
0 — no options

5



exit statuses
int main() {

return 0; /* or exit(0); */
}

6



waitpid example
#include <sys/wait.h>
...
child_pid = fork();
if (child_pid > 0) {

/* Parent process */
int status;
waitpid(child_pid, &status, 0);

} else if (child_pid == 0) {
/* Child process */
...

7



the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

8



the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

8



aside: signals
signals are a way of communicating between processes

they are also how abnormal termination happens
kernel communicating “something bad happened” → kills program by
default

wait’s status will tell you when and what signal killed a program
constants in signal.h
SIGINT — control-C
SIGTERM — kill command (by default)
SIGSEGV — segmentation fault
SIGBUS — bus error
SIGABRT — abort() library function
…

9



typical pattern
parent

fork

waitpid

child process

exec

exit()

10



typical pattern (alt)
parent

fork

waitpid

child process

exec

exit()

11



typical pattern (detail)

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

main() {
…

}

12



pattern with multiple?
parent

fork

fork

waitpid(first,…)

first child process

second child process
exec

exit()

exec
exit()

waitpid(second,…)
13



POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

14



exercise (1)
int main() {

pid_t pids[2]; const char *args[] = {"echo", "ARG", NULL};
const char *extra[] = {"L1", "L2"};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) {

args[1] = extra[i];
execv("/bin/echo", args);

}
}
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}

}

Assuming fork and execv do not fail, which are possible outputs?
A. L1 (newline) L2 D. A and B
B. L1 (newline) L2 (newline) L2 E. A and C
C. L2 (newline) L1 F. all of the above

G. something else
15



exercise (2)
int main() {

pid_t pids[2];
const char *args[] = {"echo", "0", NULL};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) {

execv("/bin/echo", args);
}

}
printf("1\n"); fflush(stdout);
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}
printf("2\n"); fflush(stdout);

}

Assuming fork and execv do not fail, which are possible outputs?
A. 0 (newline) 0 (newline) 1 (newline) 2 E. A, B, and C
B. 0 (newline) 1 (newline) 0 (newline) 2 F. C and D
C. 1 (newline) 0 (newline) 0 (newline) 2 G. all of the above
D. 1 (newline) 0 (newline) 2 (newline) 0 H. something else 16



exercise (2)
int main() {

pid_t pids[2];
const char *args[] = {"echo", "0", NULL};
for (int i = 0; i < 2; ++i) {

pids[i] = fork();
if (pids[i] == 0) {

execv("/bin/echo", args);
}

}
printf("1\n"); fflush(stdout);
for (int i = 0; i < 2; ++i) {

waitpid(pids[i], NULL, 0);
}
printf("2\n"); fflush(stdout);

}

Assuming fork and execv do not fail, which are possible outputs?
A. 0 (newline) 0 (newline) 1 (newline) 2 E. A, B, and C
B. 0 (newline) 1 (newline) 0 (newline) 2 F. C and D
C. 1 (newline) 0 (newline) 0 (newline) 2 G. all of the above
D. 1 (newline) 0 (newline) 2 (newline) 0 H. something else 16



shell
allow user (= person at keyboard) to run applications

user’s wrapper around process-management functions

upcoming homework — make a simple shell

17



aside: shell forms
POSIX: command line you have used before

also: graphical shells
e.g. OS X Finder, Windows explorer

other types of command lines?

completely different interfaces?

18



some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

19



some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

20



searching for programs
POSIX convention: PATH environment variable

example: /home/cr4bd/bin:/usr/bin:/bin
list of directories to check in order

environment variables = key/value pairs stored with process
by default, left unchanged on execve, fork, etc.

one way to implement: [pseudocode]
for (directory in path) {

execv(directory + "/" + program_name, argv);
}

21



some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

22



some POSIX command-line features
searching for programs (not in assignment)

ls -l ≈ /bin/ls -l
make ≈ /usr/bin/make

running in background (not in assignment)
./someprogram &

redirection:
./someprogram >output.txt
./someprogram <input.txt

pipelines:
./someprogram | ./somefilter

23



shell assignment
implement a simple shell that supports redirection and pipeline

for Linux or another POSIX system (not xv6)
but our supplied tests assume specifically Linux (not OS X)

…and prints the exit code of program in the pipeline

simplified parsing: space-seperated:
okay: /bin/ls -1 > tmp.txt
not okay: /bin/ls -l >tmp.txt
okay: /bin/ls -1 | /bin/grep foo > tmp.txt
not okay: /bin/ls -1 |/bin/grep foo >tmp.txt

24



POSIX: everything is a file
the file: one interface for

devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

25



the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

26



the file interface
open before use

setup, access control happens here

byte-oriented
real device isn’t? operating system needs to hide that

explicit close

26



mixing stdio/iostream and raw read/write
don’t do it (unless you’re very careful)

cin/scanf read some extra characters into a buffer?
you call read — they disappear!

cout/printf has output waiting in a buffer?
you call write — out-of-order output!

(if you need to: some stdio calls specify that they clear out buffers)

27



filesystem abstraction
regular files — named collection of bytes

also: size, modification time, owner, access control info, …

directories — folders containing files and directories
hierarchical naming: /net/zf14/cr4bd/fall2018/cs4414
mostly contains regular files or directories

28



open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
...

int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);

29



open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

path = filename

e.g. "/foo/bar/file.txt"
file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

30



open: file descriptors
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

return value = file descriptor (or -1 on error)

index into table of open file descriptions for each process

used by system calls that deal with open files

31



open: flags
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

flags: bitwise or of:
O_RDWR, O_RDONLY, or O_WRONLY

read/write, read-only, write-only
O_APPEND

append to end of file
O_TRUNC

truncate (set length to 0) file if it already exists
O_CREAT

create a new file if one doesn’t exist
(default: file must already exist)

…and more

man 2 open
32



open: mode
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

mode: permissions of newly created file
like numbers provided to chmod command
filtered by a “umask”

simple advice: always use 0666
= readable/writeable by everyone, except where umask prohibits
(typical umask: prohibit other/group writing)

33



implementing file descriptors in xv6 (1)
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

ofile[0] = file descriptor 0

pointer — can be shared between proceses
not part of deep copy fork does

null pointers — no file open with that number

34



implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

35



implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

35



implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open
off = location in file
(not meaningful for all files)

35



implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

35



implementing file descriptors in xv6 (2)
struct file {
enum { FD_NONE, FD_PIPE, FD_INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

};

FD_PIPE = to talk to other process
FD_INODE = other kind of file

alternate designs:
class + subclass per type
pointer to list of functions (Linux soln.)

number of pointers to this struct file
used to safely delete this struct

e.g. after fork same pointer
shared in parent, child

should read/write be allowed?
based on flags to open

off = location in file
(not meaningful for all files)

35



special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

36



special file descriptors
file descriptor 0 = standard input

file descriptor 1 = standard output

file descriptor 2 = standard error

constants in unistd.h
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO

but you can’t choose which number open assigns…?
more on this later

36



close
int close(int fd);

close the file descriptor, deallocating that array index
does not affect other file descriptors
that refer to same “open file description”
(e.g. in fork()ed child or created via (later) dup2)

if last file descriptor for open file description, resources deallocated

returns 0 on success

returns -1 on error
e.g. ran out of disk space while finishing saving file

37



shell redirection
./my_program ... < input.txt:

run ./my_program ... but use input.txt as input
like we copied and pasted the file into the terminal

echo foo > output.txt:
runs echo foo, sends output to output.txt
like we copied and pasted the output into that file
(as it was written)

38



exec preserves open files

user regs eax=42init. val.,
ecx=133init. val., …

kernel stack
user memory
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
redirection/etc.:

setup stdin/stdout before exec

old memory
discarded

39



fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

40



fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

40



fork copies open file list

user regs eax=42child (new) pid,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

parent process control block memory

user regs eax=420,
ecx=133, …

kernel stack
user memory

open files
fd 0: …
fd 1: …
…

… …

child process control blockcopy

copy

open file description (stdin)

open file description (stdout)

redirected-to stdout?
(set after fork, before exec)

40



typical pattern with redirection

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

parent

pid = fork();
if (pid == 0) {

open new files;
exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

child
main() {

…
}

41



redirecting with exec
standard output/error/input are files

(C stdout/stderr/stdin; C++ cout/cerr/cin)

(probably after forking) open files to redirect

…and make them be standard output/error/input
using dup2() library call

then exec, preserving new standard output/etc.

42



reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

43



reassigning and file table
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};

redirect stdout: want: ofile[1] = ofile[opened-fd];
(plus increment reference count, so nothing is deleted early)

but can’t access ofile from userspace

so syscall: dup2(opened-fd, 1);

44



reassigning file descriptors
redirection: ./program >output.txt

step 1: open output.txt for writing, get new file descriptor

step 2: make that new file descriptor stdout (number 1)

tool: int dup2(int oldfd, int newfd)
make newfd refer to same open file as oldfd

same open file description
shares the current location in the file
(even after more reads/writes)

what if newfd already allocated — closed, then reused

45



dup2 example
redirects stdout to output to output.txt:
fflush(stdout); /* clear printf's buffer */
int fd = open("output.txt",

O_WRONLY | O_CREAT | O_TRUNC);
if (fd < 0)

do_something_about_error();

dup2(fd, STDOUT_FILENO);
/* now both write(fd, ...) and write(STDOUT_FILENO, ...)

write to output.txt
*/

close(fd); /* only close original, copy still works! */

printf("This will be sent to output.txt.\n");

46



open/dup/close/etc. and fd array
struct proc {
...
struct file *ofile[NOFILE]; // Open files

};
open: ofile[new_fd] = ...;

dup2(from, to): ofile[to] = ofile[from];

close: ofile[fd] = NULL;

fork:
for (int i = ...)

child−>ofile[i] = parent−>ofile[i];

(plus extra work to avoid leaking memory) 47



read/write
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

48



read’ing one byte at a time
string s;
ssize_t amount_read;
char c;
/* cast to void * not needed in C */
while ((amount_read = read(STDIN_FILENO, (void*) &c, 1)) > 0) {

/* amount_read must be exactly 1 */
s += c;

}
if (amount_read == −1) {

/* some error happened */
perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */

}

49



write example
/* cast to void * optional in C */
write(STDOUT_FILENO, (void *) "Hello, World!\n", 14);

50



exercise
int fd = open("output.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666);
write(fd, "A", 1);
dup2(STDOUT_FILENO, 100);
dup2(fd, STDOUT_FILENO);
write(STDOUT_FILENO, "B", 1);
write(fd, "C", 1);
close(fd);
write(STDOUT_FILENO, "D", 1);
write(100, "E", 1);

Assume open() and dup2() do not fail, write() does not fail as
long as the fd it writes to is open, fd 100 was closed and is not what
open returns, and STDOUT_FILENO is initially open. What is written
to output.txt?
A. ABCDE C. ABC E. something else
B. ABCD D. ACD

51



pipes
special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes
like implementing shell pipelines

52



pipe()
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
/* normal case: */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];

then from one process…
write(write_fd, ...);

and from another
read(read_fd, ...);

53



pipe() and blocking
BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?

54



pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

55



pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

55



pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

55



pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

55



pipe and pipelines
ls -1 | grep foo

pipe(pipe_fd);
ls_pid = fork();
if (ls_pid == 0) {

dup2(pipe_fd[1], STDOUT_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"ls", "-1", NULL};
execv("/bin/ls", argv);

}
grep_pid = fork();
if (grep_pid == 0) {

dup2(pipe_fd[0], STDIN_FILENO);
close(pipe_fd[0]); close(pipe_fd[1]);
char *argv[] = {"grep", "foo", NULL};
execv("/bin/grep", argv);

}
close(pipe_fd[0]); close(pipe_fd[1]);
/* wait for processes, etc. */

56



example execution
parent

pipe() — fds 3 [read], 4 [write]

child 1

4→ stdout

close 3,4

exec ls

child 2

3→ stdin

close 3,4

exec grep
close 3,4

57



exercise
pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */
close(pipe_fds[0]);
char c = 'A';
write(pipe_fds[1], &c, 1);
exit(0);

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read %d bytes\n", count);

}

The child is trying to send the character A to the parent, but it has a
(subtle) bug.
But the above code outputs read 0 bytes instead of read 1
bytes.
What happened?

58



exercise solution
pipe() is after fork — two pipes, one in child, one in parent

59



exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C

60



exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {
close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {

char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
printf("%c", buffer[i]);

}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C

61



empirical evidence
8 0

374 01
210 012
30 0123
12 01234
3 012345
1 0123456
2 01234567
1 012345678

359 0123456789

63



partial reads
read returning 0 always means end-of-file

by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

64



read/write
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

65



read’ing a fixed amount
ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {

/* cast to void * optional in C */
ssize_t amount_read =

read(STDIN_FILENO,
(void *) (result + offset),
amount_to_read − offset);

if (amount_read < 0) {
perror("read"); /* print error message */
... /* abort??? */

} else {
offset += amount_read;

}
} while (offset != amount_to_read && amount_read != 0);

66



partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

67



partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

67



write example (with error checking)
const char *ptr = "Hello, World!\n";
ssize_t remaining = 14;
while (remaining > 0) {

/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,

ptr,
remaining);

if (amount_written < 0) {
perror("write"); /* print error message */
... /* abort??? */

} else {
remaining −= amount_written;
ptr += amount_written;

}
}

68



partial writes
usually only happen on error or interruption

but can request “non-blocking”
(interruption: via signal)

usually : write waits until it completes
= until remaining part fits in buffer in kernel
does not mean data was sent on network, shown to user yet, etc.

69



Unix API summary
spawn and wait for program: fork (copy), then

in child: setup, then execv, etc. (replace copy)
in parent: waitpid

files: open, read and/or write, close
one interface for regular files, pipes, network, devices, …

file descriptors are indices into per-process array
index 0, 1, 2 = stdin, stdout, stderr
dup2 — assign one index to another
close — deallocate index

redirection/pipelines
open() or pipe() to create new file descriptors
dup2 in child to assign file descriptor to index 0, 1

70



backup slides

71



aside: environment variables (1)
key=value pairs associated with every process:
$ printenv
MODULE_VERSION_STACK=3.2.10
MANPATH=:/opt/puppetlabs/puppet/share/man
XDG_SESSION_ID=754
HOSTNAME=labsrv01
SELINUX_ROLE_REQUESTED=
TERM=screen
SHELL=/bin/bash
HISTSIZE=1000
SSH_CLIENT=128.143.67.91 58432 22
SELINUX_USE_CURRENT_RANGE=
QTDIR=/usr/lib64/qt-3.3
OLDPWD=/zf14/cr4bd
QTINC=/usr/lib64/qt-3.3/include
SSH_TTY=/dev/pts/0
QT_GRAPHICSSYSTEM_CHECKED=1
USER=cr4bd
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:
MODULE_VERSION=3.2.10
MAIL=/var/spool/mail/cr4bd
PATH=/zf14/cr4bd/.cargo/bin:/zf14/cr4bd/bin:/usr/lib64/qt-3.3/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/puppetlabs/bin:/usr/cs/contrib/bin:.
PWD=/zf14/cr4bd
LANG=en_US.UTF-8
MODULEPATH=/sw/centos/Modules/modulefiles:/sw/linux-any/Modules/modulefiles
LOADEDMODULES=
KDEDIRS=/usr
…
_=/usr/bin/printenv

72



aside: environment variables (2)
environment variable library functions:

getenv("KEY") → value
putenv("KEY=value") (sets KEY to value)
setenv("KEY", "value") (sets KEY to value)

int execve(char *path, char **argv, char **envp)

char *envp[] = { "KEY1=value1", "KEY2=value2", NULL };
char *argv[] = { "somecommand", "some arg", NULL };
execve("/path/to/somecommand", argv, envp);

normal exec versions — keep same environment variables

73



aside: environment variables (3)
interpretation up to programs, but common ones…

PATH=/bin:/usr/bin
to run a program ‘foo’, look for an executable in /bin/foo, then
/usr/bin/foo

HOME=/zf14/cr4bd
current user’s home directory is ‘/zf14/cr4bd’

TERM=screen-256color
your output goes to a ‘screen-256color’-style terminal

…

74



multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {

waitpid(pid, ...);
...

}

75



waiting for all children
#include <sys/wait.h>
...
while (true) {
pid_t child_pid = waitpid(−1, &status, 0);
if (child_pid == (pid_t) −1) {

if (errno == ECHILD) {
/* no child process to wait for */
break;

} else {
/* some other error */

}
}
/* handle child_pid exiting */

}

76



multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses as processes finish */
while ((pid = waitpid(−1, ...)) != −1) {

handleProcessFinishing(pid);
}

77



‘waiting’ without waiting
#include <sys/wait.h>
...
pid_t return_value = waitpid(child_pid, &status, WNOHANG);
if (return_value == (pid_t) 0) {
/* child process not done yet */

} else if (child_pid == (pid_t) −1) {
/* error */

} else {
/* handle child_pid exiting */

}

78



running in background
$ ./long_computation >tmp.txt &
[1] 4049
$ ...
[1]+ Done ./long_computation > tmp.txt
$ cat tmp.txt
the result is ...

& — run a program in “background”

initially output PID (above: 4049)

print out after terminated
one way: use waitpid with option saying “don’t wait”

79



execv and const
int execv(const char *path, char *const *argv);

argv is a pointer to constant pointer to char

probably should be a pointer to constant pointer to constant char

…this causes some awkwardness:
const char *array[] = { /* ... */ };
execv(path, array); // ERROR

solution: cast
const char *array[] = { /* ... */ };
execv(path, (char **) array); // or (char * const *)

80



layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

81



why the extra layer
better (but more complex to implement) interface:

read line
formatted input (scanf, cin into integer, etc.)
formatted output

less system calls (bigger reads/writes) sometimes faster
buffering can combine multiple in/out library calls into one system call

more portable interface
cin, printf, etc. defined by C and C++ standards

82



parent and child processes
every process (but process id 1) has a parent process (getppid())
this is the process that can wait for it
creates tree of processes (Linux pstree command):

83



parent and child questions…
what if parent process exits before child?

child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()s (or equivalent) for child?
child process stays around as a “zombie”
can’t reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails

84



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

85



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

85



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

85



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

85



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

85



kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

85



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

86



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

86



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

86



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

86



kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

86



read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

87



backup slides

88


	last time
	POSIX process fucntions
	wait
	summary diagram
	waiting for more than one?
	exercises (fork+exec+wait)

	shells
	shells, the concept
	I/O redirection: syntax, method preview
	pipelines
	assignment preview

	files in POSIX, part 1
	Unix: everything is a file

	stdio.h versus system calls
	open
	open flags
	interlude: file descriptors
	close
	Shell: redirection
	dup2: redirection mechanism
	open/close/dup/fork and fd array
	read, write
	exercise (read/write/dup2)

	pipelines
	pipe
	pipe and pipelines
	exercise (1)

	pipe exercise
	partial reads and writes
	partial reads and read error checking
	partial writes and write error checking

	POSIX api summary
	aside: environment variables
	wait for mutliple
	wait for all
	wait for all (alt)
	waitpid WNOHANG
	shell: background programs
	aside: on casting
	layers of file interfaces
	parent and child
	kernel buffering

	backup slides

