last time

```
shell: redirection, pipelines
file descriptors point to open files
fork() copies pointers
dup2() – assign one pointer to another
close() sets pointer to NULL
automatic cleanup on no more refs
```

anonymous feedback / readings

I moved some things on the schedule without updating readings

caused some confusion — readings from scheduling (next topic) on earlier days

pipes

special kind of file: pipes

bytes go in one end, come out the other — once

created with pipe() library call

intended use: communicate between processes like implementing shell pipelines

pipe()

```
int pipe_fd[2];
if (pipe(pipe_fd) < 0)</pre>
    handle error();
/* normal case: */
int read_fd = pipe_fd[0];
int write fd = pipe fd[1];
then from one process...
write(write fd, ...);
and from another
read(read_fd, ...);
```

pipe() and blocking

BROKEN example: int pipe_fd[2]; if (pipe(pipe_fd) < 0) handle_error(); int read_fd = pipe_fd[0]; int write_fd = pipe_fd[1]; write(write_fd, some_buffer, some_big_size); read(read_fd, some_buffer, some_big_size); This is likely to not terminate. What's the problem?</pre>

```
int pipe fd[2];
if (pipe(pipe fd) < 0)</pre>
    handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {
    /* in child process, write to pipe */
    close(read fd);
    write_to_pipe(write_fd); /* function not shown */
    exit(EXIT SUCCESS);
} else if (child pid > 0) {
    /* in parent process, read from pipe */
    close(write fd);
    read_from_pipe(read_fd); /* function not shown */
    waitpid(child pid, NULL, 0);
    close(read fd);
} else { /* fork error */ }
```

'standard' pattern with fork()

```
int pipe fd[2];
if (pipe(pipe fd) < 0)</pre>
    handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {
    /* in child process, write to pipe */
    close(read fd);
    write_to_pipe(write_fd); /* function not shown */
    exit(EXIT SUCCESS);
} else if (child pid > 0) {
    /* in parent process, read from pipe */
    close(write fd);
    read_from_pipe(read_fd); /* function not shown */
    waitpid(child pid, NULL, 0);
    close(read fd);
} else { /* fork error */ }
```

```
read() will not indicate
int pipe fd[2];
                                            end-of-file if write fd is open
if (pipe(pipe fd) < 0)</pre>
    handle_error(); /* e.g. out of file (any copy of it)
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {
    /* in child process, write to pipe */
    close(read fd);
    write_to_pipe(write_fd); /* function not shown */
    exit(EXIT SUCCESS);
} else if (child pid > 0) {
    /* in parent process, read from pipe */
   close(write fd);
    read_from_pipe(read_fd); /* function not shown */
    waitpid(child pid, NULL, 0);
    close(read fd);
} else { /* fork error */ }
```

```
have habit of closing
int pipe fd[2];
                                         to avoid 'leaking' file descriptors
if (pipe(pipe fd) < 0)</pre>
    handle_error(); /* e.g. out of fil you can run out
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {
    /* in child process, write to pipe */
   close(read fd);
    write_to_pipe(write_fd); /* function not shown */
    exit(EXIT SUCCESS);
} else if (child pid > 0) {
    /* in parent process, read from pipe */
    close(write fd);
    read_from_pipe(read_fd); /* function not shown */
    waitpid(child pid, NULL, 0);
    close(read fd);
} else { /* fork error */ }
```

exercise

```
pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */
  close(pipe_fds[0]);
  char c = 'A';
 write(pipe fds[1], &c, 1);
  exit(0);
} else { /* parent */
  close(pipe_fds[1]);
  char c;
  int count = read(pipe_fds[0], &c, 1);
  printf("read %d bytes\n", count);
```

The child is trying to send the character A to the parent, but it has a (subtle) bug.

But the above code outputs read 0 bytes instead of read 1 bytes.

What happened?

exercise solution

pipe() is after fork — two pipes, one in child, one in parent

exercise

```
int pipe_fds[2]; pipe(pipe_fds);
pid t p = fork();
if (p == 0) {
  close(pipe_fds[0]);
  for (int i = 0; i < 10; ++i) {
    char c = '0' + i;
   write(pipe_fds[1], &c, 1);
  exit(0);
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
  printf("%c", buffer[i]);
```

Which of these are possible outputs (if pipe, read, write, fork don't fail)?

A. 0123456789 B. 0 C. (nothing)

D. A and B E. A and C F. A, B, and C

exercise

```
int pipe_fds[2]; pipe(pipe_fds);
pid t p = fork();
if (p == 0) {
  close(pipe_fds[0]);
  for (int i = 0; i < 10; ++i) {
    char c = '0' + i;
   write(pipe_fds[1], &c, 1);
  exit(0);
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {
  printf("%c", buffer[i]);
```

Which of these are possible outputs (if pipe, read, write, fork don't fail)?

A. 0123456789 B. 0 C. (nothing)

D. A and B E. A and C F. A, B, and C

empirical evidence

- 8 0
- 374 01
- 210 012
 - 30 0123
 - 12 01234
 - 3 012345
 - 1 0123456
 - 2 01234567
 - 1 012345678
- 359 0123456789

partial reads

read returning 0 always means end-of-file by default, read always waits *if no input available yet* but can set read to return *error* instead of waiting

read can return less than requested if not available e.g. child hasn't gotten far enough

read/write

```
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);
read/write up to count bytes to/from buffer
returns number of bytes read/written or -1 on error
    ssize t is a signed integer type
    error code in errno
read returning 0 means end-of-file (not an error)
    can read/write less than requested (end of file, broken I/O device, ...)
```

read'ing a fixed amount

```
ssize_t offset = 0;
const ssize t amount to read = 1024;
char result[amount to read];
do {
    /* cast to void * optional in C */
    ssize t amount read =
        read(STDIN FILENO,
             (void *) (result + offset),
             amount to read - offset);
    if (amount_read < 0) {</pre>
        perror("read"); /* print error message */
        ... /* abort??? */
    } else {
        offset += amount_read;
} while (offset != amount_to_read && amount_read != 0);
```

partial reads

on regular file: read reads what you request

but otherwise: usually gives you what's known to be available after waiting for something to be available

partial reads

on regular file: read reads what you request

but otherwise: usually gives you what's known to be available after waiting for something to be available

reading from network — what's been received

reading from keyboard — what's been typed

write example (with error checking)

```
const char *ptr = "Hello, World!\n";
ssize_t remaining = 14;
while (remaining > 0) {
    /* cast to void * optional in C */
    ssize_t amount_written = write(STDOUT_FILENO,
                                     ptr,
                                     remaining);
    if (amount written < 0) {</pre>
        perror("write"); /* print error message */
        ... /* abort??? */
    } else {
        remaining -= amount_written;
        ptr += amount_written;
```

partial writes

usually only happen on error or interruption

but can request "non-blocking" (interruption: via signal)

usually: write waits until it completes

= until remaining part fits in buffer in kernel does not mean data was sent on network, shown to user yet, etc.

pipe: closing?

if all write ends of pipe are closed can get end-of-file (read() returning 0) on read end exit()ing closes them

 \rightarrow close write end when not using

generally: limited number of file descriptors per process

ightarrow good habit to close file descriptors not being used

(but probably didn't matter for read end of pipes in example)

Unix API summary

```
spawn and wait for program: fork (copy), then
in child: setup, then execv, etc. (replace copy)
in parent: waitpid
```

files: open, read and/or write, close one interface for regular files, pipes, network, devices, ...

file descriptors are indices into per-process array index 0, 1, 2 = stdin, stdout, stderr dup2 — assign one index to another close — deallocate index

redirection/pipelines open() or pipe() to create new file descriptors dup2 in child to assign file descriptor to index 0, 1

xv6: process table

```
struct {
  struct spinlock lock;
  struct proc proc[NPROC]
} ptable;
fixed size array of all processes
lock to keep more than one thing from accessing it at once
    rule: don't change/check a process's state (RUNNING, etc.) without
    'acquiring' lock
    rule: 'release' lock when done
```

xv6: process table

```
struct {
  struct spinlock lock;
  struct proc proc[NPROC]
} ptable;
fixed size array of all processes
lock to keep more than one thing from accessing it at once
    rule: don't change/check a process's state (RUNNING, etc.) without
    'acquiring' lock
    rule: 'release' lock when done
```

xv6: allocating a struct proc

```
acquire(&ptable.lock);
  for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)</pre>
    if(p->state == UNUSED)
      goto found;
  release(&ptable.lock);
just search for PCB with "UNUSED" state
not found? fork fails
if found — allocate memory, etc.
```

```
struct proc with initial kernel stack
// Set up first user process
                               setup to return from swtch, then from exception
void
userinit(void)
  struct proc *p;
  extern char _binary_initcode_start[], _binary_initcode_size[];
  p = allocproc();
  initproc = p;
  inituvm(p->pgdir, _binary_initcode_start,
             (int) binary initcode size);
  p->tf->esp = PGSIZE;
  p->tf->eip = 0; // beginning of initcode.S
  p->state = RUNNABLE;
```

```
load into user memory
// Set up first user process.
                                              hard-coded "initial program"
void
                                              calls execv() of /init
userinit(void)
  struct proc *p;
  extern char _binary_initcode_start[], _binary_initcode_size[];
  p = allocproc();
  initproc = p;
  inituvm(p->pgdir, _binary_initcode_start,
             (int) binary initcode size);
  p->tf->esp = PGSIZE;
  p->tf->eip = 0; // beginning of initcode.S
  p->state = RUNNABLE;
```

```
modify user registers
to start at address 0
```

```
// Set up first user process.
void
userinit(void)
  struct proc *p;
  extern char _binary_initcode_start[], _binary_initcode_size[];
  p = allocproc();
  initproc = p;
  inituvm(p->pgdir, _binary_initcode_start,
            (int) binary initcode size);
  p->tf->esp = PGSIZE;
  p->tf->eip = 0; // beginning of initcode.S
  p->state = RUNNABLE;
```

set initial stack pointer

```
// Set up first user process.
void
userinit(void)
  struct proc *p;
  extern char _binary_initcode_start[], _binary_initcode_size[];
  p = allocproc();
  initproc = p;
  inituvm(p->pgdir, _binary_initcode_start,
            (int) binary initcode size);
  p->tf->esp = PGSIZE;
  p->tf->eip = 0; // beginning of initcode.S
  p->state = RUNNABLE;
```

set process as runnable

```
// Set up first user process.
void
userinit(void)
  struct proc *p;
  extern char _binary_initcode_start[], _binary_initcode_size[];
  p = allocproc();
  initproc = p;
  inituvm(p->pgdir, _binary_initcode_start,
            (int) binary initcode size);
  p->tf->esp = PGSIZE;
  p->tf->eip = 0; // beginning of initcode.S
  p->state = RUNNABLE;
```

threads versus processes

for now — each process has one thread

Anderson-Dahlin talks about thread scheduling

```
thread = part that gets run on CPU
saved register values (including own stack pointer)
save program counter

rest of process
address space (accessible memory)
open files
current working directory
...
```

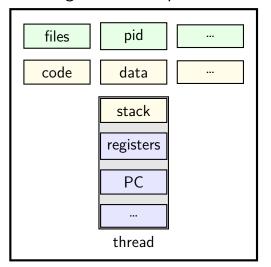
xv6 processes versus threads

xv6: one thread per process

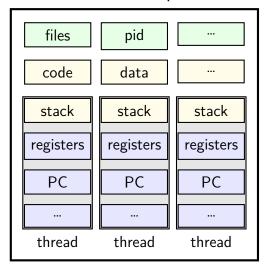
so part of the process control block is really a *thread control block*

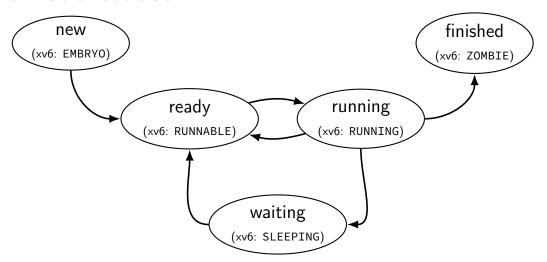
```
// Per-process state
struct proc {
 uint sz:
                             // Size of process memory (bytes)
  pde_t* pgdir;
                           // Page table
 char *kstack;
                           // Bottom of kernel stack for this process
  enum procstate state; // Process state
 int pid;
                           // Process ID
  struct proc *parent; // Parent process
  struct trapframe *tf;  // Trap frame for current syscall
  struct context *context; // swtch() here to run process
 void *chan;
                         // If non-zero, sleeping on chan
                             // If non-zero, have been killed
  int killed;
  struct file *ofile[NOFILE]; // Open files
  struct inode *cwd; // Current directory
 char name[16];
                           // Process name (debugging)
};
```

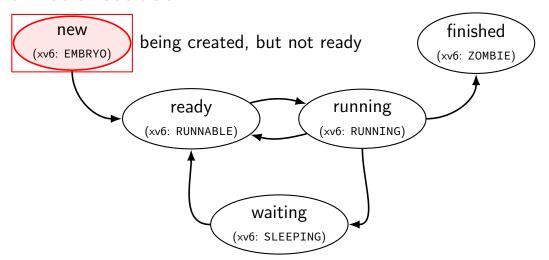
xv6 processes versus threads

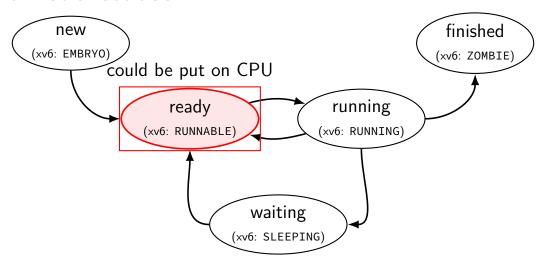

xv6: one thread per process

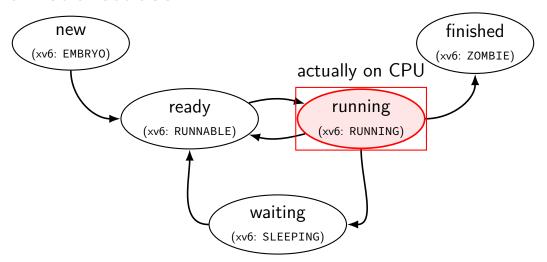
so part of the process control block is really a *thread control block*

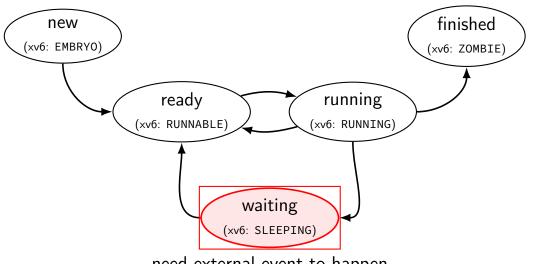

```
// Per-process state
struct proc {
 uint sz:
                             // Size of process memory (bytes)
  pde_t* pgdir;
                            // Page table
 char *kstack;
                            // Bottom of kernel stack for this process
  enum procstate state;  // Process state
 int pid;
                           // Process ID
  struct proc *parent; // Parent process
 struct trapframe *tf;  // Trap frame for current syscall
  struct context *context; // swtch() here to run process
 void *chan;
                             // If non-zero, sleeping on chan
                             // If non-zero, have been killed
 int killed;
  struct file *ofile[NOFILE]; // Open files
  struct inode *cwd; // Current directory
                            // Process name (debugging)
 char name[16];
};
```

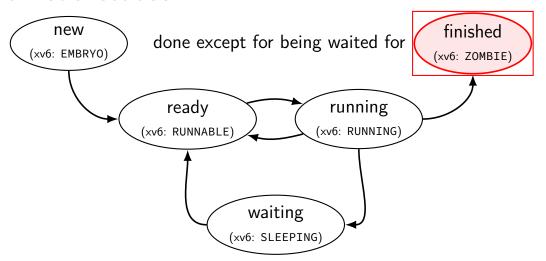

single and multithread processes

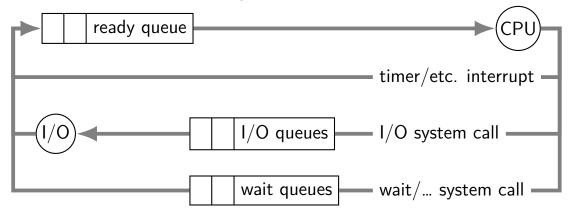

single-threaded process

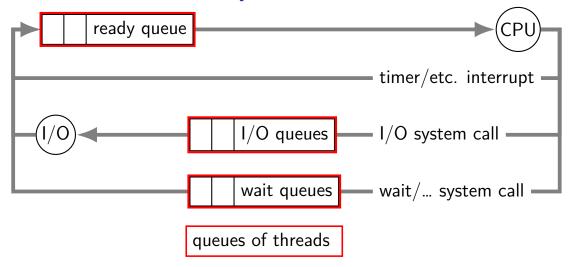


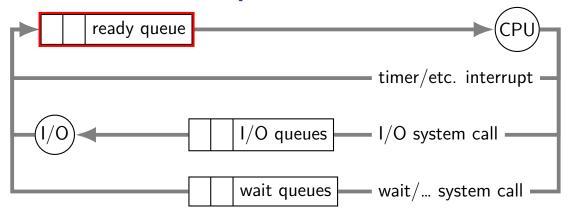

multi-threaded process








need external event to happen


alternative view: queues

alternative view: queues

alternative view: queues

ready queue or run queue list of running processes question: what to take off queue first when CPU is free?

on queues in xv6

xv6 doesn't represent queues explicitly no queue class/struct

ready queue: process list ignoring non-RUNNABLE entries

I/O queues: process list where SLEEPING, chan = I/O device

real OSs: typically separate list of processes maybe sorted?

scheduling

scheduling = removing process/thread to remove from queue mostly for the ready queue (pre-CPU) remove a process and start running it

example other scheduling problems

batch job scheduling

e.g. what to run on my supercomputer?
jobs that run for a long time (tens of seconds to days)

can't easily 'context switch' (save job to disk??)

I/O scheduling

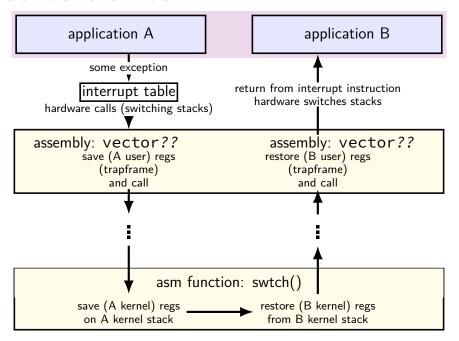
what order to read/write things to/from network, hard disk, etc.

this lecture

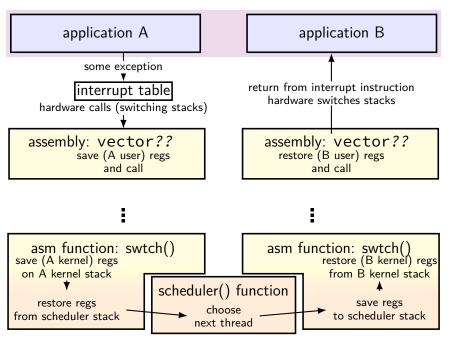
main target: CPU scheduling

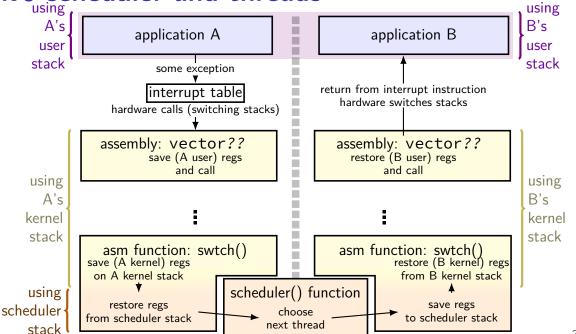
...on a system where programs do a lot of I/O

...and other programs use the CPU when they do

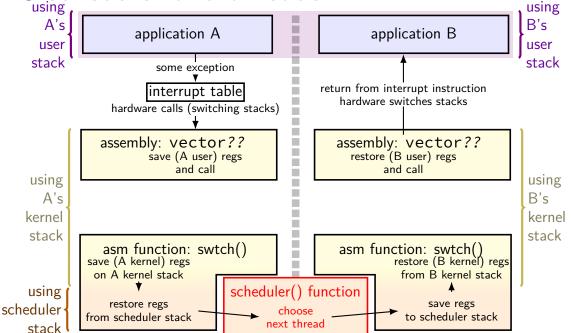

...with only a single CPU

many ideas port to other scheduling problems especially simpler/less specialized policies


scheduling policy


scheduling policy = what to remove from queue

xv6 context switch



xv6 context switch using using A's B's application A application B user user stack stack some exception return from interrupt instruction interrupt table hardware switches stacks hardware calls (switching stacks) assembly: vector?? assembly: vector?? restore (B user) regs save (A user) regs (trapframe) (trapframe) and call and call using using A's B's kernel kernel stack stack asm function: swtch() save (A kernel) regs restore (B kernel) regs on A kernel stack from B kernel stack

39

39

```
void scheduler(void) {
  struct proc *p;
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire(&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      ... /* setup for process switch */
      swtch(&(c->scheduler), p->context); /* ... */
      ... /* cleanup for process switch */
    release(&ptable.lock);
```

void scheduler(void) {

```
struct proc *p;
struct cpu *c = mycpu();
c\rightarrow proc = 0;
for(;;){
 // Enable interrupts on this processor.
  sti();
  // Loop over process table looking for process to run.
  acquire(&ptable.lock);
  for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
    if(p->state != RUNNABLE)
      continue;
    ... /* setup for process switch */
    swtch(&(c->scheduler), p->context); /* ... */
    ... /* cleanup for process switch */
  release(&ptable.lock);
```

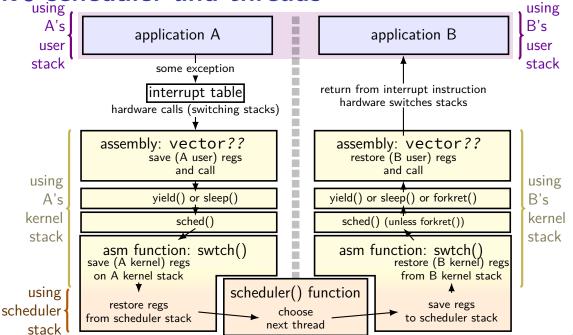
infinite loop every iteration: switch to a thread thread will switch back to us

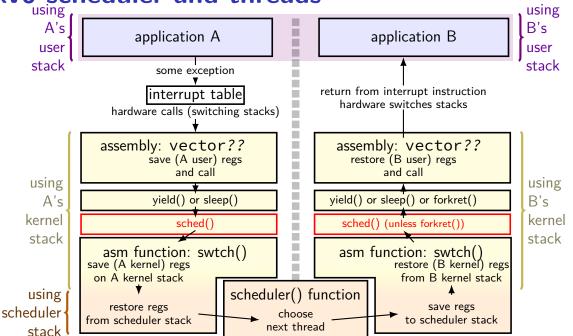
```
void sched
 struct p enable interrupts (sti is the x86 instruction)
  struct c makes sure keypresses, etc. will be handled
  c->proc
           \dots (but acquiring the process table lock disables interrupts again)
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire(&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      ... /* setup for process switch */
      swtch(&(c->scheduler), p->context); /* ... */
      ... /* cleanup for process switch */
    release(&ptable.lock);
```

```
void sched
 struct make sure we're the only one accessing the list of processes
 struct disables interrupts
  c->proc
          e.g. don't want timer interrupt to switch while already switching
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire(&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      ... /* setup for process switch */
      swtch(&(c->scheduler), p->context); /* ... */
      ... /* cleanup for process switch */
    release(&ptable.lock);
```

```
void scheduler(void) {
                                   iterate through all runnable processes
  struct proc *p;
                                    in the order they're stored in a table
  struct cpu *c = mycpu();
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire(&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      ... /* setup for process switch */
      swtch(&(c->scheduler), p->context); /* ... */
      ... /* cleanup for process switch */
    release(&ptable.lock);
```

```
void scheduler(void)
                        switch to whatever runnable process we find
  struct proc *p;
  struct cpu *c = mycp when it's done (e.g. timer interrupt)
                        it switches back, then next loop iteration happens
  c\rightarrow proc = 0;
  for(;;){
    // Enable interrupts on this processor.
    sti();
    // Loop over process table looking for process to run.
    acquire(&ptable.lock);
    for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){</pre>
      if(p->state != RUNNABLE)
        continue;
      ... /* setup for process switch */
      swtch(&(c->scheduler), p->context); /* ... */
      ... /* cleanup for process switch */
    release(&ptable.lock);
```

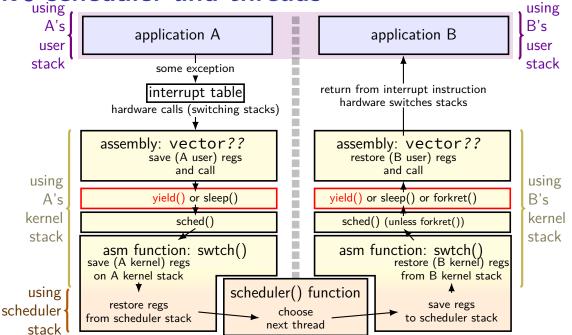

```
/* in scheduler(): */
      // Switch to chosen process. It is the process's job
      // to release ptable.lock and then reacquire it
      // before jumping back to us.
      c\rightarrow proc = p;
      switchuvm(p);
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm():
      // Process is done running for now.
      // It should have changed its p->state before coming back.
      c\rightarrow proc = 0;
```


```
/* in scheduler(): */
      // Switch to chosen pr
      // to release ptable. track what process is being run
      // before jumping back so we can look it up in interrupt handler
      c\rightarrow proc = p;
      switchuvm(p);
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm():
      // Process is done running for now.
      // It should have changed its p->state before coming back.
      c\rightarrow proc = 0:
```

```
/* in scheduler(): */
      // Switch // to rele prepare: change address space, change process state
      // before jumping back to us.
       c\rightarrow proc = p;
       switchuvm(p);
       p->state = RUNNING;
       swtch(&(c->scheduler), p->context);
       switchkvm():
      // Process is done running for now.
      // It should have changed its p->state before coming back.
       c\rightarrow proc = 0;
```

```
/* in scheduler(): */
      // Switch to kernel thread of process
      // before jt that thread responsible for going back to user mode
      c\rightarrow proc = p
      switchuvm(p);
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm():
      // Process is done running for now.
      // It should have changed its p->state before coming back.
      c\rightarrow proc = 0;
```

```
/* in scheduler(): */
             after we've run the process until it's done, we end up here
      // bet
             ...so, change address space back away from user process
      p->state = RUNNING;
      swtch(&(c->scheduler), p->context);
      switchkvm();
      // Process is done running for now.
      // It should have changed its p->state before coming back.
      c\rightarrow proc = 0;
```

sched()

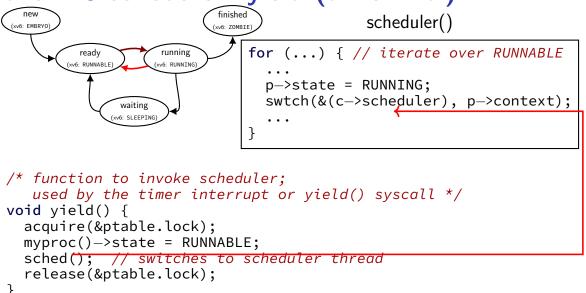
sched() — essentially just calls swtch()

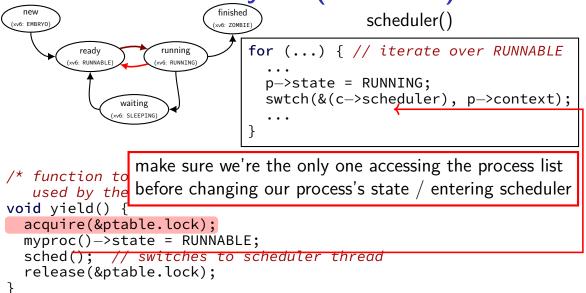
switching to/from scheduler

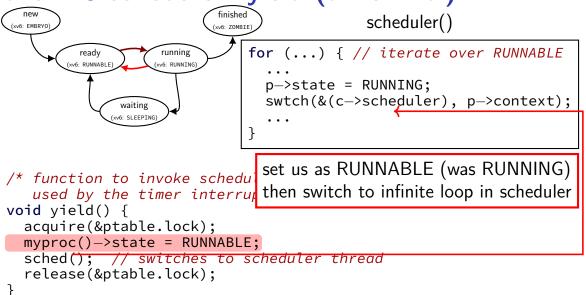
- (1) acquire process table lock prevent someone else from switching to scheduler at same time ...causing confusion about what's running/runnable (someone else = timer interrupt, another core, ...)
- (2) mark current process as not running
- (3) actually switch to scheduler thread scheduler thread runs, possibly switches to other threads, etc.
- (4) scheduler thread switches back invariant: process table lock held invariant: current thread marked running
- (5) release process table lock

45

switching to/from scheduler

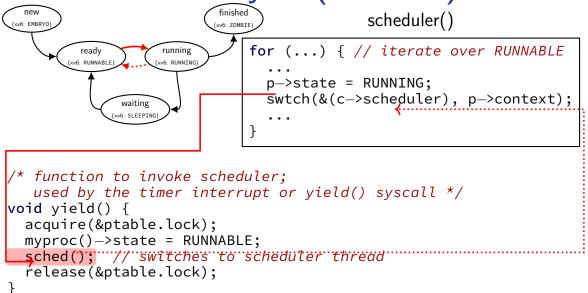

- (1) acquire process table lock prevent someone else from switching to scheduler at same time ...causing confusion about what's running/runnable (someone else = timer interrupt, another core, ...)
- (2) mark current process as not running
- (3) actually switch to scheduler thread scheduler thread runs, possibly switches to other threads, etc.
- (4) scheduler thread switches back invariant: process table lock held invariant: current thread marked running
- (5) release process table lock

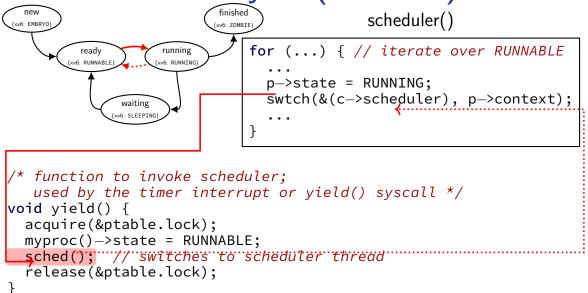


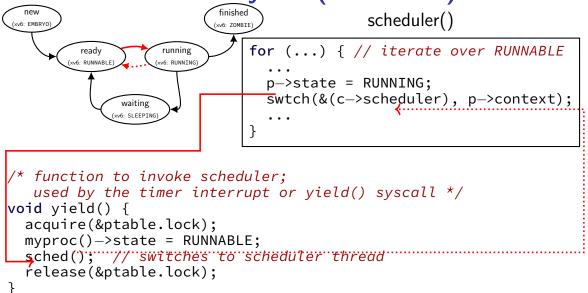

```
/* function to invoke scheduler;
   used by the timer interrupt or yield() syscall */
void yield() {
   acquire(&ptable.lock);
   myproc()->state = RUNNABLE;
   sched(); // switches to scheduler thread
   release(&ptable.lock);
}
```

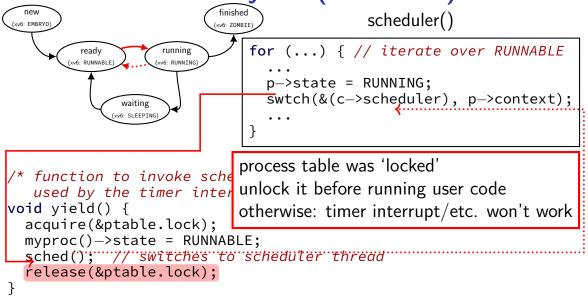


```
/* function to invoke scheduler;
  used by the timer interrupt or y
void yield() {
  acquire(&ptable.lock);
  myproc()->state = RUNNABLE;
  sched(); // switches to scheduler thread
  release(&ptable.lock);
}
```

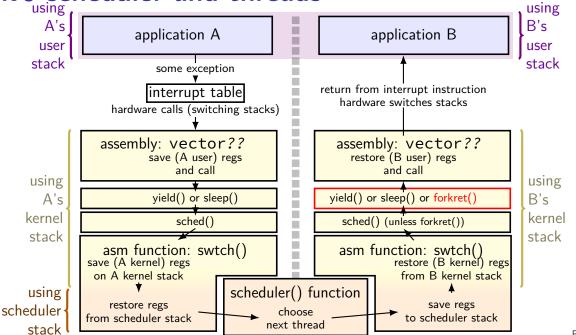


switching to/from scheduler


- (1) acquire process table lock
 prevent someone else from switching to scheduler at same time
 ...causing confusion about what's running/runnable
 (someone else = timer interrupt, another core, ...)
- (2) mark current process as not running
- (3) actually switch to scheduler thread scheduler thread runs, possibly switches to other threads, etc.
- (4) scheduler thread switches back

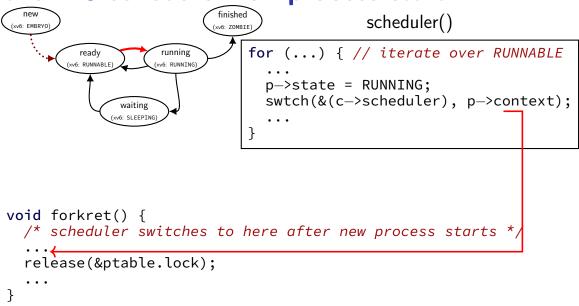

invariant: process table lock held


invariant: current thread marked running

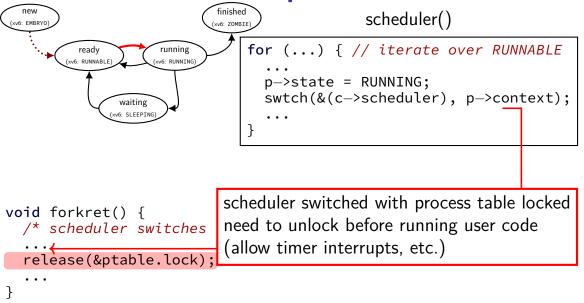
(5) release process table lock



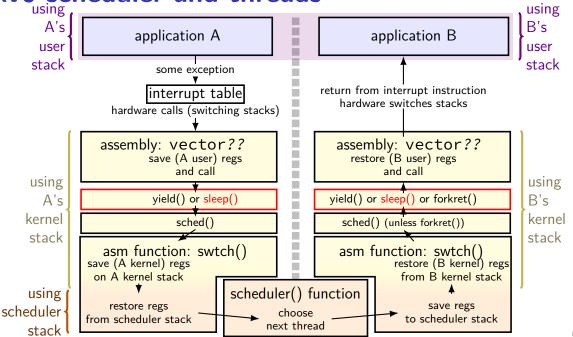
xv6 scheduler and threads


50

the xv6 scheduler: on process start




```
void forkret() {
   /* scheduler switches to here after new process starts */
   ...
   release(&ptable.lock);
   ...
}
```


the xv6 scheduler: on process start

the xv6 scheduler: on process start

xv6 scheduler and threads

52

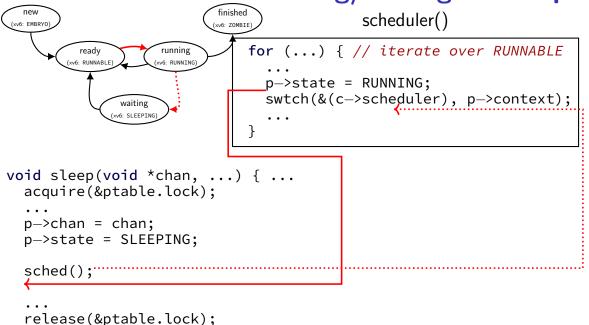

```
void sleep(void *chan, ...) { ...
  acquire(&ptable.lock);
  ...
  p->chan = chan;
  p->state = SLEEPING;
  sched();
  ...
  release(&ptable.lock);
```


release(&ptable.lock);

get exclusive access to process table before changing our state to sleeping and before running scheduler loop


```
void sleep(void *chan, ...) {
    acquire(&ptable.lock);
    ...

p->chan = chan;
p->state = SLEEPING;


sched();

...
release(&ptable.lock);
```

```
set us as SLEEPING (was RUNNING) use "chan" to remember why (so others process can wake us up)
```

```
finished
                                               scheduler()
vv6: EMBRVO
                                for (...) { // iterate over RUNNABLE
                    running
                    xv6: RUNNTNO
                                   p->state = RUNNING;
                                  swtch(&(c->scheduler), p->context);
               waiting
void sleep(void *chan, ...) { ...
  acquire(&ptable.lock);
  p->chan = chan;
  p->state = SLEEPING;
                               ...and switch to the scheduler infinite loop
  sched();
```

release(&ptable.lock);

the xv6 scheduler: SLEEPING to RUNNABLE


```
wakeup1(void *chan)
{
  struct proc *p;

  for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
    if(p->state == SLEEPING && p->chan == chan)
        p->state = RUNNABLE;
}
```

static void

xv6 scheduler odd choices

separate scheduler thread

pro: keep scheduler state (last process p) on the stack

con: slower — more thread switches

scan process list to find sleeping/waiting threads

alternative: separate list of waiting threads (...definitely faster if lots of non-runnable threads)

process state tracking code tightly integrated with policy

alternative: utility function to manage process states, current process value, etc.

the scheduling policy problem

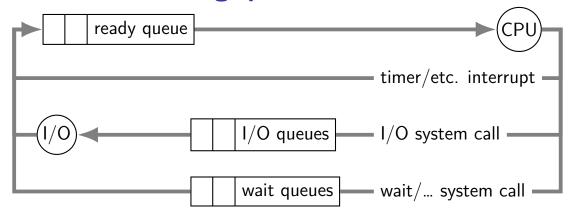
what RUNNABLE program should we run?

xv6 answer: whatever's next in list

best answer?

well, what should we care about?

some simplifying assumptions


welcome to 1970:

one program per user

one thread per program

programs are independent

recall: scheduling queues

CPU and I/O bursts

compute
start read
(from file/keyboard/...)

wait for I/O

compute on read data start read

wait for I/O

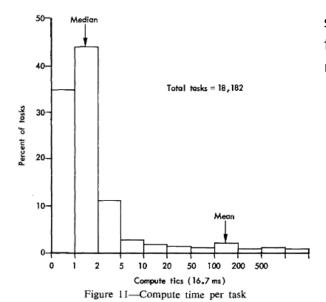
compute on read data start write

wait for I/O

•••

program alternates between computing and waiting for I/O

examples:


shell: wait for keypresses

drawing program: wait for mouse presses/etc.

web browser: wait for remote web server

CPU bursts and interactivity (one c. 1966 shared system)

shows compute time from command entered until next command prompt

CPU bursts and interactivity (one c. 1990 desktop)

Length of CPU burst

CPU bursts

observation: applications alternate between I/O and CPU especially interactive applications but also, e.g., reading and writing from disk

typically short "CPU bursts" (milliseconds) followed by short "IO bursts" (milliseconds)

scheduling CPU bursts

our typical view: ready queue, bunch of CPU bursts to run

to start: just look at running what's currently in ready queue best same problem as 'run bunch of programs to completion'?

later: account for I/O after CPU burst

an historical note

historically applications were less likely to keep all data in memory historically computers shared between more users meant \emph{more} applications alternating I/O and CPU

context many scheduling policies were developed in

scheduling metrics

```
turnaround time (Arpaci-Dusseau) AKA response time
(Anderson-Dahlin)(want low)
     (what Arpaci-Dusseau calls response time is related, but slightly
     different)
     what user sees: from keypress to character on screen
     (submission until job finished — runnable to not runnable)
throughput (want high)
     total work per second
     problem: overhead (e.g. from context switching)
```

fairness

many definitions all conflict with best average throughput/turnaround time

turnaround time and I/O

scheduling CPU bursts? (what we'll mostly deal with)
turnaround time ≈ time to start next I/O
turnaround time = time from runnable to not runnable again
important for fully utilizing I/O devices
closed loop: faster turnaround time → program requests CPU sooner

scheduling batch program on cluster?

turnaround time \approx how long does user wait once program done with CPU, it's probably done

throughput

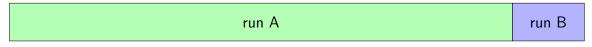
context switch
(each .5 units)

run A
(3 units)

run B
(2 units)

run A
(2 units)

throughput: useful work done per unit time

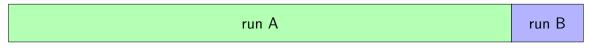

non-context switch CPU utilization =
$$\frac{3+3+2}{3+.5+3+.5+2} = 88\%$$

also other considerations:

time lost due to cold caches time lost not starting I/O early as possible

...

fairness



run A	run B						
-------	-------	-------	-------	-------	-------	-------	-------

assumption: one program per user

two timelines above; which is fairer?

fairness

run A	run B						
-------	-------	-------	-------	-------	-------	-------	-------

assumption: one program per user

two timelines above; which is fairer?

easy to answer — but formal definition?

backup slides