
scheduling 2

1



changelog
changes since first lecture:

10 Feb 2022: edit responsiveness to ‘user-perceived responsiveness’ in
metrics exercise
10 Feb 2022: add metrics exercise explanation slide
13 Feb 2022: correct turnaround time for C in third schedule in metrics
exercise explanation slide
14 Feb 2022: also correct turnaround time for A, B in third schedule in
metrics exercise explanation slide as well as context switch count
14 Feb 2022: fixup calculatio of turnaround time for A in first schedule
in metrics exercise explanation slide

2



last time
partial reads:

read() from pipe, keyboard — get what’s there now
nothing there? read() waits for something

read() of 0 = EOF (not nothing available)

pipe() pitfalls
finite storage in buffer; write() waits if full
call before fork() if you want one pipe() for parent+child

xv6 scheduler thread idea
switch to scheduler thread
scheduler thread switches to actual process

thread states: ready, running, waiting
xv6: variable in TCB

3



scheduling metrics
turnaround time (Arpaci-Dusseau) AKA response time
(Anderson-Dahlin)(want low)

(what Arpaci-Dusseau calls response time is related, but slightly
different)
what user sees: from keypress to character on screen
(submission until job finished — runnable to not runnable)

throughput (want high)
total work per second (work = stuff programs we run want to do)
problem: overhead (e.g. from context switching)

fairness
many definitions
all conflict with best average throughput/turnaround time

4



turnaround time and I/O
scheduling CPU bursts? (what we’ll mostly deal with)

turnaround time ≈ time to start next I/O
turnaround time = time from runnable to not runnable again
important for fully utilizing I/O devices
closed loop: faster turnaround time → program requests CPU sooner

scheduling batch program on cluster?
turnaround time ≈ how long does user wait
once program done with CPU, it’s probably done

5



throughput

run A
(3 units)

context switch
(each .5 units)

run B
(3 units)

run A
(2 units)

throughput: “useful” work done per unit time
deciding what to run = “not useful”
doing bookkeeping = “not useful”

non-context switch CPU utilization = 3 + 3 + 2
3 + .5 + 3 + .5 + 2

= 88%

also other considerations:
time lost due to cold caches
…

6



fairness
timeline 1 run A run B

timeline 2run A run B run A run B run A run B run A run B

assumption: one program per user

two timelines above; which is fairer?

easy to answer — but formal definition?

7



fairness
timeline 1 run A run B

timeline 2run A run B run A run B run A run B run A run B

assumption: one program per user

two timelines above; which is fairer?

easy to answer — but formal definition?

7



metrics example/exercise (1)which schedule is better for:
throughput?
mean turnaround time?
fairness?
user-percieved responsiveness?

program A: (use CPU) (wait for
network)

program B:

program C:

1
CPU:

I/O:
B A C

A not ready
A

2
CPU:

I/O:
A B C A C

A not ready
A

3
CPU:

I/O:
A C A C

A not ready
B C A C

8



metrics example explanations?which schedule is better for:
throughput?
mean turnaround time?
fairness?
user-precieved responsiveness?

program A: (use CPU) (wait for
network)

program B:

program C:

1
CPU:

I/O:
B A C

A not ready
A

3 context switches

turnaround:
1 (B) + 3 + 2 (A) + 7 (C)

2
CPU:

I/O:
A B C A C

A not ready
A

5 context switches

turnaround:
2 (B) + 4 + 1 (A) + 7 (C)

3
CPU:

I/O:
A C A C

A not ready
B C A C

7 context switches

turnaround:
5 (B) + 3 + 1 (A) + 8 (C)

9



metrics example/exercise (2)
program A: (wait for

keypress)
(wait for
network)

program B: (wait for
disk)

program C:

which schedule is better for:
throughput?
mean turnaround time?
fairness?
user-perceived responsiveness?1

CPU:
I/O: A not ready

B

B not ready

C B A C
A not ready

A

2
CPU:

I/O: A not ready
B

B not ready

C A C B
A not ready

A

10



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

11



scheduling example assumptions
multiple programs become ready at almost the same time

alternately: became ready while previous program was running

…but in some order that we’ll use
e.g. our ready queue looks like a linked list

12



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

13



first-come, first-served
simplest(?) scheduling algorithm

no preemption — run program until it can’t
suitable in cases where no context switch
e.g. not enough memory for two active programs

14



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

15



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

15



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

15



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

15



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

15



first-come, first-served (FCFS)
(AKA “first in, first out” (FIFO))

thread CPU time needed
A 24
B 4
C 3

A ∼ CPU-bound
B, C ∼ I/O bound or interactive

arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

15



FCFS orders
arrival order: A, B, C

A B C
0 10 20 30

turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: B, C, A

B C A
0 10 20 30

turnaround times: (mean=14)
31 (A), 3 (B), 7 (C)

“convoy effect”

16



two trivial scheduling algorithms
first-come first served (FCFS)

round robin (RR)

17



round-robin
simplest(?) preemptive scheduling algorithm

run program until either
it can’t run anymore, or
it runs for too long (exceeds “time quantum”)

requires good way of interrupting programs
like xv6’s timer interrupt

requires good way of stopping programs whenever
like xv6’s context switches

18



round robin (RR) (varying order)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

turnaround times: (mean=16.3)
31 (A), 10 (B), 8 (C)

19



round robin (RR) (varying order)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 1,
order B, C, A

BCABCABCAB A

0 10 20 30

turnaround times: (mean=16.3)
31 (A), 10 (B), 8 (C)

19



round robin (RR) (varying time quantum)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

turnaround times: (mean=17.3)
31 (A), 10 (B), 11 (C)

20



round robin (RR) (varying time quantum)
time quantum = 1,
order A, B, C

ABCABCABCAB A

0 10 20 30

turnaround times: (mean=17)
31 (A), 11 (B), 9 (C)

time quantum = 2,
order A, B, C
A B C A B C A

0 10 20 30

turnaround times: (mean=17.3)
31 (A), 10 (B), 11 (C)

20



round robin idea
choose fixed time quantum Q

unanswered question: what to choose

switch to next process in ready queue after time quantum expires

this policy is what xv6 scheduler does
scheduler runs from timer interrupt (or if process not runnable)
finds next runnable process in process table

21



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput

FCFS = RR with infinite quantum
more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround time?

22



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround time?

22



aside: context switch overhead
typical context switch: ∼ 0.01 ms to 0.1 ms

but tricky: lot of indirect cost (cache misses)
(above numbers try to include likely indirect costs)

choose time quantum to manage this overhead

current Linux default: between ∼0.75 ms and ∼6 ms
varied based on number of active programs
Linux’s scheduler is more complicated than RR

historically common: 1 ms to 100 ms
1% to 0.1% ovherhead?

23



round robin and time quantums

RR with
short quantum FCFS

order doesn’t matter
(more fair)

first program favored
(less fair)

many context switches
(lower throughput)

few context switches
(higher throughput)

smaller quantum: more fair, worse throughput
FCFS = RR with infinite quantum

more fair: at most (N − 1)Q time until scheduled if N total processes

but what about turnaround time?
24



exercise: round robin quantum
if there were no context switch overhead, decreasing the time
quantum (for round robin) would cause mean turnaround time to

.

A. always decrease or stay the same

B. always increase or stay the same

C. increase or decrease or stay the same

D. something else?

25



increase mean turnaround time
A: 1 unit CPU burst
B: 1 unit

Q = 1

Q = 1/2

A B
mean turnaround time =
(1 + 2) ÷ 2 = 1.5

mean turnaround time =
(1.5 + 2) ÷ 2 = 1.75

26



decrease mean turnaround time
A: 10 unit CPU burst
B: 1 unit

Q = 10

Q = 5

A B
mean turnaround time =
(10 + 11) ÷ 2 = 10.5

mean turnaround time =
(6 + 11) ÷ 2 = 8.5

27



stay the same
A: 1 unit CPU burst
B: 1 unit

Q = 10

Q = 1

A B

28



FCFS and order
earlier we saw that with FCFS, arrival order mattered

big changes in turnaround/waiting time

let’s use that insight to see how to optimize mean/total turnaround
times

29



FCFS ordersarrival order: A, B, C
A B C

0 10 20 30
waiting times: (mean=17.3)
0 (A), 24 (B), 28 (C)
turnaround times: (mean=27.7)
24 (A), 28 (B), 31 (C)

arrival order: C, B, A
C B A

0 10 20 30
waiting times: (mean=3.3)
7 (A), 3 (B), 0 (C)
turnaround times: (mean=13.7)
31 (A), 7 (B), 3 (C)

arrival order: B, C, A
B C A

0 10 20 30
waiting times: (mean=3.7)
7 (A), 0 (B), 4 (C)
turnaround times: (mean=14)
31 (A), 4 (B), 7 (C)

30



order and turnaround time
best total/mean turnaround time = run shortest CPU burst first

worst total/mean turnaround time = run longest CPU burst first

intuition (1): “race to go to sleep”

intuition (2): minimize time with two threads waiting

later: we’ll use this result to make a scheduler that minimizes mean
turnaround time

31



order and turnaround time
best total/mean turnaround time = run shortest CPU burst first

worst total/mean turnaround time = run longest CPU burst first

intuition (1): “race to go to sleep”

intuition (2): minimize time with two threads waiting

later: we’ll use this result to make a scheduler that minimizes mean
turnaround time

31



diversion: some users are more equal
shells more important than big computation?

i.e. programs with short CPU bursts

faculty more important than students?

scheduling algorithm: schedule shells/faculty programs first

32



priority scheduling
priority 15
…
priority 3
priority 2
priority 1
priority 0

ready queues for each priority level

thread A thread B

thread C
thread D thread E thread F

choose thread from ready queue for highest priority
within each priority, use some other scheduling (e.g. round-robin)

could have each thread have unique priority

33



priority scheduling and preemption
priority scheduling can be preemptive

i.e. higher priority program comes along — stop whatever else was
running

34



exercise: priority scheduling (1)
Suppose there are two threads:

thread A
highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take thread Z complete?

35



exercise: priority scheduling (2)
Suppose there are three threads:
thread A

highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread B
second-highest priority
repeat forever: 1 unit of I/O, then 10 units of CPU, …

thread Z
lowest priority
4000 units of CPU (and no I/O)

How long will it take thread Z complete?
36



starvation
programs can get “starved” of resources

never get those resources because of higher priority

big reason to have a ‘fairness’ metric

something almost all definitions of fairness agree on

37



fair scheduling
what is the fairest scheduling we can do?

intuition: every thread has an equal chance to be chosen

38



random scheduling algorithm
“fair” scheduling algorithm: choose uniformly at random

good for “fairness”

bad for response time

bad for predictability

39



proportional share
maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

40



proportional share
maybe every thread isn’t equal

if thread A is twice as important as thread B, then…

one idea: thread A should run twice as much as thread B

proportional share

40



lottery scheduling

A
100 tickets

B
200 tickets

C
100 tickets

every thread has a certain number of lottery tickets:

scheduling = lottery among ready threads:

0 100 200 300 400
choose random number in this range to find winner

41



simulating priority with lottery
A (high priority)

1M tickets
B (medium priority)

1K tickets
C (low priority)

1 tickets

very close to strict priority

42



lottery scheduling assignment
assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how often threads scheduled (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

43



lottery scheduling assignment
assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how often threads scheduled (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?

43



is lottery scheduling actually good?
seriously proposed by academics in 1994 (Waldspurger and Weihl,
OSDI’94)

including ways of making it efficient
making preemption decisions (other than time slice ending)
if threads don’t use full time slice
handling non-CPU-like resources
…

elegant mecahnism that can implement a variety of policies

but there are some problems…

44



backup slides

45


	last time
	scheduling metrics
	exercise (1)
	exercise (2)

	FCFS and RR
	FCFS and examples with orders
	RR and examples with orders
	FCFS and round-robin continuum
	aside: real context switch overhead
	context switch overhead
	exercise: RR and turnaround times
	FCFS response time tradeoff

	priority
	exercise
	starvation

	fairness goals: proportional share
	intuitive fairness
	proportional share
	lottery scheduling

	backup slides

