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changelog
reorganize CFS slides to put text describing algorithm after
examples
and move proportaionl share discussion till later
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last time
throughput, turnaround time, fairness

throughput: time running actual programs (not scheduling stuff)
turnaround time ∼ responsiveness, maybe?

first-come, first-served and round-robin
run threads in order they are listed
round robin: and stop running after time quantum

time quantum — how long to let run?
longer: less context switches; shorter: probably more fair?
typical 1–100 ms
control context switch overhead

optimizing turnaround time: shorter things first
priority scheduling and starvation
proportional share scheduling as priority compromise 3



lottery scheduling

A
100 tickets

B
200 tickets

C
100 tickets

every thread has a certain number of lottery tickets:

scheduling = lottery among ready threads:

0 100 200 300 400
choose random number in this range to find winner
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simulating priority with lottery
A (high priority)

1M tickets
B (medium priority)

1K tickets
C (low priority)

1 tickets

very close to strict priority
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lottery scheduling assignment
assignment: add lottery scheduling to xv6

extra system call: settickets

also counting of how often threads scheduled (for testing)

simplification: okay if scheduling decisions are linear time
there is a faster way

not implementing preemption before time slice ends
might be better to run new lottery when process becomes ready?
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is lottery scheduling actually good?
seriously proposed by academics in 1994 (Waldspurger and Weihl,
OSDI’94)

including ways of making it efficient
making preemption decisions (other than time slice ending)
if threads don’t use full time slice
handling non-CPU-like resources
…

elegant mecahnism that can implement a variety of policies

but there are some problems…
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exercise
thread A: 1 ticket, always runnable

thread B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10
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exercise
thread A: 1 ticket, always runnable

thread B: 9 tickets, always runnable

over 10 time quantum
what is the probability A runs for at least 3 quanta?

i.e. 3 times as much as “it’s supposed to”
chosen 3 times out of 10 instead of 1 out of 10

approx. 7%
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A runs w/in 10 times…
0 times 34%
1 time 39%
2 time 19%
3 time 6%
4 time 1%
5+ time <1%

(binomial distribution…)
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minimizing turnaround time
recall: first-come, first-served best order:
had shortest CPU bursts first

→ scheduling algorithm: ‘shortest job first’ (SJF)

= same as priority where CPU burst length determines priority

…but without preemption for now
priority = job length doesn’t quite work with preemption
(preview: need priority = remaining time)
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a practical problem
so we want to run the shortest CPU burst first

how do I tell which thread that is?

we’ll deal with this problem later

…kinda
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alternating I/O and CPU: SJF
program A CPU I/O …

program B C
P
U

I/O …

program C …

shortest CPU burst not run immediately
still have “convoy effect”
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preemption: definition
stopping a running program while it’s still runnable

example: FCFS did not do preemption. RR did.

what we need to solve the problem:
‘accidentally’ ran long task, now need room for short one
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adding preemption (1)
what if a long job is running, then a short job interrupts it?

short job will wait for too long

solution is preemption — reschedule when new job arrives
new job is shorter — run now!

14



adding preemption (2)
what if a long job is almost done running, then a medium job
interrupts it?

recall: priority = job length
long job waits for medium job
…for longer than it would take to finish
worse than letting long job finish

solution: priority = remaining time

called shortest remaining time first (SRTF)
prioritize by what’s left, not the total
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alternating I/O and CPU: SRTF
program A CPU I/O …

program B C
P
U

I/O …

program C …

B preempts A because it has less time left
(that is, B is shorter than the time A has left)

C does not preempt A
because finishing A is faster than running C
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SRTF, SJF are optimal (for turnaround time)
SJF minimizes turnaround time/waiting time
…if you disallow preemption/leaving CPU deliberately idle

SRTF minimizes turnaround time/waiting time
…if you ignore context switch costs
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aside on names
we’ll use:

SRTF for preemptive algorithm with remaining time

SJF for non-preemptive with total time=remaining time

might see different naming elsewhere/in books, sorry…
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knowing job (CPU burst) lengths
seems hard

sometimes you can ask
common in batch job scheduling systems

and maybe you’ll get accurate answers, even
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the SRTF problem
want to know CPU burst length
well, how does one figure that out?

e.g. not any of these fields
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
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predicting the future
worst case: need to run the program to figure it out

but heuristics can figure it out
(read: often works, but no gaurentee)

key observation: CPU bursts now are like CPU bursts later
intuition: interactive program with lots of I/O tends to stay interactive
intuition: CPU-heavy program is going to keep using CPU
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multi-level feedback queues
classic strategy based on priority scheduling

combines update time estimates and running shorter times first

key idea: current priority ≈ current time estimate

small(ish) number of time estimate “buckets”

will show one version; lots of small variations
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multi-level feedback queues: setup
priority 3
∼0–1 ms CPU burst
priority 2
∼1–10 ms CPU burst
priority 1
∼10–20 ms CPU
burst
priority 0
∼20+ ms CPU burst

thread A thread B

thread C

thread D thread E thread F

goal: place processes at priority level based on CPU burst time
just a few priority levels — can’t guess CPU burst precisely anyways

dynamically adjust priorities based on observed CPU burst times
priority level → allowed/expected time quantum

use more than 1ms at priority 3? — you shouldn’t be there
use less than 1ms at priority 0? — you shouldn’t be there 23



taking advantage of history

priority 3 / 1 ms
priority 2 / 10 ms
priority 1 / 20 ms
priority 0 / 100 ms

idea: priority = CPU burst length

round robin at
each priority

with different
quantum

thread A thread B
thread C
thread D thread E thread F

run highest
priority process

used whole timeslice?
add to lower priority queue now

thread A

finished early?
put on higher priority next time

thread A
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multi-level feedback queue idea
higher priority = shorter time quantum (before interrupted)

adjust priority and timeslice based on last timeslice

intuition: thread always uses same CPU burst length?
ends up at “right” priority

rises up to queue with quantum just shorter than it’s burst
then goes down to next queue, then back up, then down, then up, etc.
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MLFQ example
A: (wait for

I/O)
(wait for

I/O)
(wait for

I/O)
…

B: (I/O) (I/O)

prio 3:
A’s I/O

B I/O

quantum
B
A ready

A A’s I/O A

A finishes I/O

A’s I/O A A’s I/O

prio 2:
quantum

B uses quantum, demoted

B ready B B ready B B I/O

B promoted;
did not use

whole quantum

B

prio 1:
quantum

B uses quantum (again), demoted
(NB: new quantum used in two parts)

B B ready B

quantum A, B start at highest priority (wrong guess for B)

quantum oscillation: too big for prio 2 / too small for prio 3
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cheating multi-level feedback queuing
algorithm: don’t use entire time quantum? priority increases

getting all the CPU:
while (true) {
useCpuForALittleLessThanMinimumTimeQuantum();
yieldCpu();

}
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multi-level feedback queuing and fairness
suppose we are running several programs:

A. one very long computation that doesn’t need any I/O
B1 through B1000. 1000 programs processing data on disk
C. one interactive program

how much time will A get?

almost none — starvation
intuition: the B programs have higher priority than A
because it has smaller CPU bursts
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conflicting goals for interactivity heuristics
efficiency

avoid scanning all threads every few milliseconds

figure out new programs quickly

adapt to changes/spikes in program behavior

avoid pathological behavior
starvation, hanging when new compute-intensive program starts, etc.

exercise: how to handle each of these well?
what does MLFQ do well?
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Linux’s Completely Fair Scheduler (CFS)
Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run
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CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree
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virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum
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A doesn’t use whole time…

A

A: 0.25 ms
B: 1.25 ms
C: 1.50 ms

B

A(not ready): 0.75 ms
B: 1.25 ms
C: 1.50 ms

A

A(ready): 0.75 ms
B: 2.25 ms
C: 1.50 ms

A scheduled early
since it still has

time it’s entitled to

C

A: 1.75 ms
B: 2.25 ms
C: 1.50 ms

A

A: 1.75 ms
B: 2.25 ms
C: 2.50 ms

0 ms 1 ms 2 ms 3 ms
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A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

37



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

37



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

37



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

37



A’s long sleep…

B

A(sleeping): 1.50 ms
B: 850.00 ms
C: 850.95 ms

scenario setup:
A started waiting for I/O a while ago

B, C been using CPU

C

A(sleeping): 1.50 ms
B: 851.00 ms
C: 850.95 ms

A

A(now ready): 1.50 ms 850.00 ms
B: 851.00 ms
C: 851.70 ms

problem: if we keep A’s virtual time at 1.50ms
then A will hog CPU “too much”
solution: adjust A’s virtual time

B

A(sleeping): 850.75 ms
B: 851.00 ms
C: 851.70 ms

C

A(sleeping): 850.75 ms
B: 852.00 ms
C: 851.70 ms

0 ms 1 ms 2 ms 3 ms

37



what about threads waiting for I/O, …?
should be advantage for processes not using the CPU as much

haven’t used CPU for a while — deserve priority now
…but don’t want to let them hog the CPU

Linux solution: newly ready task time = max of
its prior virtual time
a little less than minimum virtual time (of already ready tasks)

not runnable briefly? still get your share of CPU
(catch up from prior virtual time)

not runnable for a while? get bounded advantage

38
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CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree
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CFS exercise (0c)
A: CPU:

∼4 ms
wait for I/O:

∼2 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

suppose programs A, B with alternating CPU + I/O as above

with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get?

40



exercise solution
if A, B, were running alone, could get at most 1/2 the CPU

B can’t use that much time

so B will run 2/5ths of the time (the most it can)

so B will almost always have lower virtual time than A

A will get the remaining about 3/5ths

exception: time both A and B are both doing I/O

exception: extra time A gets to run if no preemption during its time
quantum?

41
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backup sides
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MLFQ variations
version of MLFQ I described is in Anderson-Dahlin

problems:

starvation
worse than with real SRTF — based on guess, not real remaining time

oscillation not great for predictability

44



variation to prevent starvation
Apraci-Dusseau presents variant of MLFQ w/o starvation

two changes:

don’t increase priority when whole quantum not used
instead keep the same — more stable

periodically increase priority of all threads
allow compute-heavy threads to run a little
still deals with thread’s behavior changing over time
replaces finer-grained upward adjustments
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FreeBSD scheduler
current default FreeBSD scheduler based on MLFQ idea

…but: time quantums don’t depend on priority

computes interactivity score ∼ I/O wait
I/O wait + runtime

note: deliberately not estimating remaining time

(using “recent” history of thread)

thread priorities set based on interactivity score
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CFS quantum lengths goals
first priority: constrain minimum quantum length (default: 0.75ms)

avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)
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CFS: avoiding excessive context switching
conflicting goals:

schedule newly ready tasks immediately
(assuming less virtual time than current task)

avoid excessive context switches

CFS rule:
if virtual time of new task < current virtual time by threshold

default threshold: 1 ms

(otherwise, wait until quantum is done)
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real-time
so far: “best effort” scheduling

best possible (by some metrics) given some work

alternate model: need gaurnetees

deadlines imposed by real-world
process audio with 1ms delay
computer-controlled cutting machines (stop motor at right time)
car brake+engine control computer
…
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real time example: CPU + deadlines

CPU needed

ready deadline

CPU needed

ready deadline

CPU needed

ready deadline
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example with RR
ready deadline

ready deadline

ready deadline

missed deadline!
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earliest deadline first
ready deadline

ready deadline

ready deadline
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impossible deadlines
ready deadline

ready deadline

ready deadline

no way to meet all deadlines!
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admission control
given worst-case runtimes, start times, deadlines, scheduling
algorithm,…

figure out whether it’s possible to gaurentee meeting deadlines
details on how — not this course (probably)

if not, then
change something so they can?
don’t ship that device?
tell someone at least?
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earliest deadline first and…
earliest deadline first does not (even when deadlines met)

minimize response time
maximize throughput
maximize fairness

exercise: give an example
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other real-time schedulers
typical real time systems: periodic tasks with deadlines

“rate monotonic”

commonly approximate EDF with lower period = higher priority
easier to implement than true EDF

well-known method to determine if schedule is admissible
= won’t exceed deadline (under some assumptions)
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aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O
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aside: measuring fairness (2)
one way: max-min fairness

choose schedule that maximizes the minimum resource given to
anyone

most fair least fair
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4.4BSD scheduler
4.4BSD / FreeBSD pre-2003 scheduler was a variation on MLFQ

64 priority levels, 100 ms quantum

same quantum at every priority

priorities adjusted periodically
in retrospect not good for performance — iterate through all threads
part of why FreeBSD stopped using this scheduler

priority of threads that spent a lot of time waiting for I/O increased

priority of threads that used a lot of CPU time decreased
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other CFS parts
dealing with multiple CPUs

handling groups of related tasks

special ‘idle’ or ‘batch’ task settings

…

60



CFS versus others
very similar to stride scheduling

presented as a deterministic version of lottery scheduling
Waldspurger and Weihl, “Stride Scheduling: Deterministic
Proportional-Share Resource Management” (1995, same authors as
lottery scheduling)

very similar to weighted fair queuing
used to schedule network traffic
Demers, Keshav, and Shenker, “Analysis and Simulation of a Fair
Queuing Algorithm” (1989)
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backup slides
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