
scheduling (finish) / threads

1

last time
lottery scheduler

randomness maybe not so great in practice

shortest remaining time first
special case: thread interrupted when almost done

multi-level feedback queue: SRTF approximation with priority
heuristic: thread CPU bursts consistent
key idea 1: priority estimates CPU burst length
key idea 2: time quantum at priority X ∼ CPU burst length at priority X
oscillating behvaior

MLFQ in practice: need to deal with starvation
Linux Completely Fair Scheduler (CFS)

prioritize by virtual runtime
like round robin, with adjustments for programs doing I/O
supports proportional share (today) 2

CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

5

CFS exercise (0a)
A: CPU:

∼ inf ms

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

…

A: 0.0 ms
B: 1.0 ms

A: 1.5 ms
B: 1.0 ms

A: 1.5 ms
B(in I/O):2.0 ms

A: 3.0 ms
B: 2.0 ms

A: 3.0 ms
B(in I/O): 3.0 ms

A: 4.5 ms
B: 3.0 ms

B’s virtual time increasing slower than A’s
B always gets priority

suppose programs A, B; max 1 ms time quanta
with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get? 6

CFS exercise (0a)
A: CPU:

∼ inf ms

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

…

A: 0.0 ms
B: 1.0 ms

A: 1.5 ms
B: 1.0 ms

A: 1.5 ms
B(in I/O):2.0 ms

A: 3.0 ms
B: 2.0 ms

A: 3.0 ms
B(in I/O): 3.0 ms

A: 4.5 ms
B: 3.0 ms

B’s virtual time increasing slower than A’s
B always gets priority

suppose programs A, B; max 1 ms time quanta
with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get? 7

CFS exercise (0a)
A: CPU:

∼ inf ms

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

…

A: 0.0 ms
B: 1.0 ms

A: 1.5 ms
B: 1.0 ms

A: 1.5 ms
B(in I/O):2.0 ms

A: 3.0 ms
B: 2.0 ms

A: 3.0 ms
B(in I/O): 3.0 ms

A: 4.5 ms
B: 3.0 ms

B’s virtual time increasing slower than A’s
B always gets priority

suppose programs A, B; max 1 ms time quanta
with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get? 7

CFS exercise (0b)
A: CPU:

∼4 ms
wait for I/O:

∼2 ms
… (repeating

forever)

B: CPU:
∼ inf ms

A: 1.0 ms
B: 0.0 ms

A: 1.0 ms
B: 1.0 ms

A: 2.0 ms
B: 1.0 ms

A: 2.0 ms
B: 2.0 ms

A: 3.0 ms
B: 2.0 ms

A: 3.0 ms
B: 3.0 ms

A(in I/O): 4.0 ms
B: 3.0 ms

A(done I/O): 4.0 ms
B: 5.0 ms

A gets about half the time overall
can’t run if used more time than B
gets to catch up for how far it’s behind
after I/O

suppose programs A, B; 1 ms time quata
with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get? 8

CFS exercise (0a)
A: CPU:

∼ inf ms

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

…

A: 0.0 ms
B: 1.0 ms

A: 1.5 ms
B: 1.0 ms

A: 1.5 ms
B(in I/O):2.0 ms

A: 3.0 ms
B: 2.0 ms

A: 3.0 ms
B(in I/O): 3.0 ms

A: 4.5 ms
B: 3.0 ms

B’s virtual time increasing slower than A’s
B always gets priority

suppose programs A, B; max 1 ms time quanta
with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get? 9

CFS exercise (0a)
A: CPU:

∼ inf ms

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

…

A: 0.0 ms
B: 1.0 ms

A: 1.5 ms
B: 1.0 ms

A: 1.5 ms
B(in I/O):2.0 ms

A: 3.0 ms
B: 2.0 ms

A: 3.0 ms
B(in I/O): 3.0 ms

A: 4.5 ms
B: 3.0 ms

B’s virtual time increasing slower than A’s
B always gets priority

suppose programs A, B; max 1 ms time quanta
with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get? 9

CFS exercise (0c)
A: CPU:

∼4 ms
wait for I/O:

∼2 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

suppose programs A, B with alternating CPU + I/O as above

with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion
of CPU does program A get?

10

exercise solution
if A, B, were running alone, could get at most 1/2 the CPU

B can’t use that much time

so B will run 2/5ths of the time (the most it can)

so B will almost always have lower virtual time than A

A will get the remaining about 3/5ths

exception: time both A and B are both doing I/O

exception: extra time A gets to run if no preemption during its time
quantum?

11

CFS exercise (1)
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

C: …(uses CPU forever) …

suppose programs A, B, C with alternating CPU + I/O as above

with CFS (and equal weights) and no adjustments to virtual
time for programs waking up from sleep, about what portion of
CPU does program A get?

12

CFS exercise: maximum time for A
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

A running alone: A runs 2/5ths of the time
A, B, C sharing fairly: each runs 1/3rd of the time

if A used more than 1/3rd of the time…
then it would have a higher virtual time…
and B and C would catch up
(and same for B or C)

result: A runs at most 1/3rd of the time…
unless B can’t use its full share because of I/O

(because of being interrupted by A too much?)
13

CFS exercise (2)
A: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

B: CPU:
∼1 ms

wait:
∼1.5 ms

… (repeating
forever)

C: …(uses CPU forever) …

suppose we add adjustments to virtual time for waking up from
sleep

expected direction of change in how much compute time A gets?

14

CFS exercise: A disadvantage from sleep
A

A(not ready): 10.0 ms
B: 10.0 ms
C: 11.0 ms

B

A(not ready): 10.0 ms
B(not ready): 11.0 ms
C: 11.0 ms

C

A(not ready): 10.0 ms
B: 11.0 ms
C: 12.5 ms

B

A(not ready): 10.0 ms 10.5 ms
B: 11.5 ms
C: 12.5 ms

A

if scheduler configured to limit advantage
of newly ready threads enough:
A might ‘lose’ some virtual time

because it waits for I/O “too long”
and since A waits for I/O longer

probably loses more time than C this way
15

CFS exercise: A interrupted by B?
A alone: CPU:

∼2 ms
wait for I/O:

∼3 ms
… (repeating

forever)

A with B?: A B
∼1 ms A B

∼1 ms A wait for I/O:
∼3 ms

A interrupted by B a bunch sometimes…?

might not start I/O as often

might not be able to run 1/3rd of the time

e.g. sometimes 2/(2 + 2 + 3) ≈ 28% of CPU

16

handling proportional sharing
solution: multiply used time by weight

e.g. 1 ms of CPU time costs process 2 ms of virtual time

higher weight =⇒ process less favored to run

17

CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

18

CFS quantum lengths goals
first priority: constrain minimum quantum length (default: 0.75ms)

avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

19

CFS quantum lengths goals
first priority: constrain minimum quantum length (default: 0.75ms)

avoid too-frequent context switching

second priority: run every process “soon” (default: 6ms)
avoid starvation

quantum ≈ max(fixed window / num processes, minimum quantum)

19

CFS: avoiding excessive context switching
conflicting goals:

schedule newly ready tasks immediately
(assuming less virtual time than current task)

avoid excessive context switches

CFS rule:
if virtual time of new task < current virtual time by threshold

default threshold: 1 ms

(otherwise, wait until quantum is done)

20

other CFS parts
dealing with multiple CPUs

handling groups of related tasks

special ‘idle’ or ‘batch’ task settings

…

21

CFS versus others
very similar to stride scheduling

presented as a deterministic version of lottery scheduling
Waldspurger and Weihl, “Stride Scheduling: Deterministic
Proportional-Share Resource Management” (1995, same authors as
lottery scheduling)

very similar to weighted fair queuing
used to schedule network traffic
Demers, Keshav, and Shenker, “Analysis and Simulation of a Fair
Queuing Algorithm” (1989)

22

which scheduler should I choose?
I care about…
CPU throughput: first-come first-serve

average response time: SRTF approximation

I/O throughput: SRTF approximation

fairness — medium-term CPU usage: something like Linux CFS

fairness — wait time: something like RR

(not covered this semester) real-world deadlines: earliest deadline first or similar

favoring certain users: strict priority

23

a note on multiprocessors
what about multicore?

want two cores to schedule without waiting for each other

want to keep process on same core (better for cache)

what core to preempt when three+ choices?

common approach:
separate ready list per core
regularly ‘rebalance’ threads between cores

24

which scheduler should I choose?
I care about…
CPU throughput: first-come first-serve

average response time: SRTF approximation

I/O throughput: SRTF approximation

fairness — medium-term CPU usage: something like Linux CFS

fairness — wait time: something like RR

(not covered this semester) real-world deadlines: earliest deadline first or similar

favoring certain users: strict priority

25

using threads

26

why threads?
concurrency: different things happening at once

one thread per user of web server?
one thread per page in web browser?
one thread to play audio, one to read keyboard, …?
…

parallelism: do same thing with more resources
multiple processors to speed-up simulation (life assignment)

27

aside: alternate threading models
we’ll talk about kernel threads

OS scheduler deals directly with threads

alternate idea: library code handles threads

kernel doesn’t know about threads w/in process

hierarchy of schedulers: one for processes, one within each process

not currently common model — awkward with multicore

28

thread versus process state
thread state — kept in thread control block

registers (including stack pointer, program counter)
scheduling state (runnable, waiting, …)
other information?
…

process state — kept in process control block
address space (memory layout, heap location, …)
open files
process id
list of thread control blocks
…

29

Linux idea: task_struct
Linux model: single “task” structure = thread
pointers to address space, open file list, etc.
pointers can be shared

e.g. shared open files: open fd 4 in one task → all sharing can use fd 4

fork()-like system call “clone”: choose what to share
clone(0, ...) — similar to fork()
clone(CLONE_FILES, ...) — like fork(), but sharing open files
clone(CLONE_VM, new_stack_pointer, ...) — like fork(),
but sharing address space

advantage: no special logic for threads (mostly)
two threads in same process = tasks sharing everything possible

30

Linux idea: task_struct
Linux model: single “task” structure = thread
pointers to address space, open file list, etc.
pointers can be shared

e.g. shared open files: open fd 4 in one task → all sharing can use fd 4

fork()-like system call “clone”: choose what to share
clone(0, ...) — similar to fork()
clone(CLONE_FILES, ...) — like fork(), but sharing open files
clone(CLONE_VM, new_stack_pointer, ...) — like fork(),
but sharing address space

advantage: no special logic for threads (mostly)
two threads in same process = tasks sharing everything possible

30

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

main()

pthread_create

pthread_create
ComputePi

… PrintClassList

31

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:

thread identifier
function to run

thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument
32

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:

thread identifier
function to run

thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument
32

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:

thread identifier
function to run

thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument
32

pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:

thread identifier
function to run

thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument
32

a threading race
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n");
return NULL;

}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

33

a race
returning from main exits the entire process (all its threads)

same as calling exit; not like other threads

race: main’s return 0 or print_message’s printf first?
time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

34

fixing the race (version 1)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n");
return NULL;

}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
pthread_join(the_thread, NULL); /* WAIT FOR THREAD */
return 0;

}

35

fixing the race (version 2; not recommended)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n");
return NULL;

}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
pthread_exit(NULL);

}

36

pthread_join, pthread_exit
pthread_join: wait for thread, retrieves its return value

like waitpid, but for a thread
return value is pointer to anything

pthread_exit: exit current thread, returning a value
like exit or returning from main, but for a single thread
same effect as returning from function passed to pthread_create

37

sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i)

sum += values[i];
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i)

sum += values[i];
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — sharedtwo different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

38

sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i)

sum += values[i];
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i)

sum += values[i];
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — shared

two different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

38

sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i)

sum += values[i];
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i)

sum += values[i];
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — shared

two different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

38

sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i)

sum += values[i];
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i)

sum += values[i];
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — sharedtwo different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

38

thread_sum memory layout
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

sum_front_thread stack

sum_back_thread stack

Heap / other dynamic
Code / Data

values, results (global)

PC
registers
…

TCB for sum_front thread

PC
registers
…

TCB for sum_back thread

sum_front
sum_back

39

thread_sum memory layout
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

sum_front_thread stack

sum_back_thread stack

Heap / other dynamic
Code / Data

values, results (global)

PC
registers
…

TCB for sum_front thread

PC
registers
…

TCB for sum_back thread

sum_front
sum_back

39

sum example (to global, with thread IDs)
int values[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += values[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

values, results: global variables — shared

40

sum example (to global, with thread IDs)
int values[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += values[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

values, results: global variables — shared

40

sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

41

sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

41

sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

41

sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

41

thread_sum memory layout (info struct)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

threads[0] stack

threads[1] stack

Heap / other dynamic
Code / Data values (global)

info array

my_info

my_info

42

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

43

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

43

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

43

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

43

program memory (to main stack)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

first thread stack

second thread stack

Heap / other dynamic
Code / Data

info array values (stack? heap?)

my_info

my_info

44

sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
delete[] info;
return result;

}

45

sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
delete[] info;
return result;

}

45

sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
delete[] info;
return result;

}

45

thread_sum memory (heap version)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

first thread stack

second thread stack

Heap / other dynamic
Code / Data

info array values (stack? heap?)

my_info

my_info

46

what’s wrong with this?
/* omitted: headers */
#include <string>
using std::string;
void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

}
int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, create_string, NULL);
string *string_ptr;
pthread_join(the_thread, (void*) &string_ptr);
cout << "string is " << *string_ptr;

}

47

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

48

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

48

thread resources
to create a thread, allocate:

new stack (how big???)

thread control block

deallocated when …

can deallocate stack when thread exits

but need to allow collecting return value
same problem as for processes and waitpid

49

thread resources
to create a thread, allocate:

new stack (how big???)

thread control block

deallocated when …

can deallocate stack when thread exits

but need to allow collecting return value
same problem as for processes and waitpid

49

pthread_detach
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_create(&show_progress_thread, NULL, show_progress, NULL);

/* instead of keeping pthread_t around to join thread later: */
pthread_detach(show_progress_thread);

}

int main() {
spawn_show_progress_thread();
do_other_stuff();
...

}

detach = don’t care about return value, etc.
system will deallocate when thread terminates

50

starting threads detached
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
pthread_attr_destroy(&attrs);

}

51

setting stack sizes
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
}

52

a note on error checking
from pthread_create manpage:

special constants for return value

same pattern for many other pthreads functions

will often omit error checking in slides for brevity

53

error checking pthread_create
int error = pthread_create(...);
if (error != 0) {

/* print some error message */
}

54

backup slides

55

backup sides

56

4.4BSD scheduler
4.4BSD / FreeBSD pre-2003 scheduler was a variation on MLFQ

64 priority levels, 100 ms quantum

same quantum at every priority

priorities adjusted periodically
in retrospect not good for performance — iterate through all threads
part of why FreeBSD stopped using this scheduler

priority of threads that spent a lot of time waiting for I/O increased

priority of threads that used a lot of CPU time decreased

57

Linux’s Completely Fair Scheduler (CFS)
Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

58

Linux’s Completely Fair Scheduler (CFS)
Linux’s default scheduler is a proportional share scheduler…

…without randomization (consistent)

…with O(log N) scheduling decision
(handles many threads/processes)

…which favors interactive programs

…which adjusts timeslices dynamically
shorter timeslices if many things to run

59

CFS: tracking runtime
each thread has a virtual runtime (∼ how long it’s run)

incremented when run based how long it runs

more/less important thread? multiply adjustments by factor

adjustments for threads that are new or were sleeping
too big an advantage to start at runtime 0

scheduling decision: run thread with lowest virtual runtime
data structure: balanced tree

60

virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

61

virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

61

virtual time, always ready, 1 ms quantum

A

A: 0.50 ms
B: 1.25 ms
C: 1.40 ms

B

A: 1.50 ms
B: 1.25 ms
C: 1.40 ms

C

A: 1.50 ms
B: 2.25 ms
C: 1.40 ms

A

A: 1.50 ms
B: 2.25 ms
C: 2.40 ms

0 ms 1 ms 2 ms 3 ms

at each time:
update current thread’s time
run thread with lowest total time

same effect as round robin
if everyone uses whole quantum

61

MLFQ variations
version of MLFQ I described is in Anderson-Dahlin

problems:

starvation
worse than with real SRTF — based on guess, not real remaining time

oscillation not great for predictability

62

variation to prevent starvation
Apraci-Dusseau presents variant of MLFQ w/o starvation

two changes:

don’t increase priority when whole quantum not used
instead keep the same — more stable

periodically increase priority of all threads
allow compute-heavy threads to run a little
still deals with thread’s behavior changing over time
replaces finer-grained upward adjustments

63

FreeBSD scheduler
current default FreeBSD scheduler based on MLFQ idea

…but: time quantums don’t depend on priority

computes interactivity score ∼ I/O wait
I/O wait + runtime

note: deliberately not estimating remaining time

(using “recent” history of thread)

thread priorities set based on interactivity score

64

real-time
so far: “best effort” scheduling

best possible (by some metrics) given some work

alternate model: need gaurnetees

deadlines imposed by real-world
process audio with 1ms delay
computer-controlled cutting machines (stop motor at right time)
car brake+engine control computer
…

65

real time example: CPU + deadlines

CPU needed

ready deadline

CPU needed

ready deadline

CPU needed

ready deadline

66

example with RR
ready deadline

ready deadline

ready deadline

missed deadline!

67

earliest deadline first
ready deadline

ready deadline

ready deadline

68

impossible deadlines
ready deadline

ready deadline

ready deadline

no way to meet all deadlines!

69

admission control
given worst-case runtimes, start times, deadlines, scheduling
algorithm,…

figure out whether it’s possible to gaurentee meeting deadlines
details on how — not this course (probably)

if not, then
change something so they can?
don’t ship that device?
tell someone at least?

70

earliest deadline first and…
earliest deadline first does not (even when deadlines met)

minimize response time
maximize throughput
maximize fairness

exercise: give an example

71

other real-time schedulers
typical real time systems: periodic tasks with deadlines

“rate monotonic”

commonly approximate EDF with lower period = higher priority
easier to implement than true EDF

well-known method to determine if schedule is admissible
= won’t exceed deadline (under some assumptions)

72

aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

73

aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

73

aside: measuring fairness (1)
first question: what needs to be divided fairly?

problem: what about programs waiting for I/O?

answer 1:
don’t consider what happens when program waiting for I/O

answer 2:
give program credit for time not running while waiting for I/O

73

aside: measuring fairness (2)
one way: max-min fairness

choose schedule that maximizes the minimum resource given to
anyone

most fair least fair

74

aside: measuring fairness (2)
one way: max-min fairness

choose schedule that maximizes the minimum resource given to
anyone

most fair least fair

74

	CFS exercise (0a)
	CFS exercise (0b)
	CFS exercise (0c)
	CFS exercise
	making proportional
	adjusting time quantums
	misc CFS features
	versus other schedulers

	which scheduler should I use?
	a note on multiple processors

	which scheduler should I use?
	threads
	why threads?
	aside: alternate threading models
	thread control block
	pthread create
	exercise: pthread create race
	pthread join and exit
	parallel calculations in threads
	passing info to threads
	thread ID as argument
	globals + info struct as argument
	no globals + info struct as argument
	everything on the heap

	on thread resources, detached threads
	exercise
	join, detach, etc.

	on error checking

	backup slides
	4.4BSD scheduler
	CFS intro
	variations

	real-time scheduling
	measuring fairness

