
thread 2 / synchronization 1

1

last time
reasoning about CFS sharing

intuition: everyone gets equal share, if they can use it
can’t use share? divided up among remaining

multithreaded process
same files, pid
same address space (memory)
newly allocated stack per thread

pthread_create ∼ fork, but run specific function
pthread_join ∼ waitpid
passing values to threads

global variables, pointer containing something
can have thread store value somewhere, read it from main thread

2

sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
delete[] info;
return result;

}

3

sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
delete[] info;
return result;

}

3

sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

ThreadInfo *start_sum_all(int *values) {
ThreadInfo *info = new ThreadInfo[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
delete[] info;
return result;

}

3

thread_sum memory (heap version)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

first thread stack

second thread stack

Heap / other dynamic
Code / Data

info array values (stack? heap?)

my_info

my_info

4

thread resources
to create a thread, allocate:

new stack (how big???)

thread control block

deallocated when …

can deallocate stack when thread exits

but need to allow collecting return value
same problem as for processes and waitpid

5

thread resources
to create a thread, allocate:

new stack (how big???)

thread control block

deallocated when …

can deallocate stack when thread exits

but need to allow collecting return value
same problem as for processes and waitpid

5

pthread_detach
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_create(&show_progress_thread, NULL, show_progress, NULL);

/* instead of keeping pthread_t around to join thread later: */
pthread_detach(show_progress_thread);

}

int main() {
spawn_show_progress_thread();
do_other_stuff();
...

}

detach = don’t care about return value, etc.
system will deallocate when thread terminates

6

starting threads detached
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
pthread_attr_destroy(&attrs);

}

7

setting stack sizes
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
}

8

a note on error checking
from pthread_create manpage:

special constants for return value

same pattern for many other pthreads functions

will often omit error checking in slides for brevity

9

error checking pthread_create
int error = pthread_create(...);
if (error != 0) {

/* print some error message */
}

10

the correctness problem
schedulers introduce non-determinism

scheduler might run threads in any order
scheduler can switch threads at any time

worse with threads on multiple cores
cores not precisely synchronized (stalling for caches, etc., etc.)
different cores happen in different order each time

allows for “race condition” bugs
outcome depends on whether one thread can ‘race’ ahead of another

…to be avoided by synchronization constructs
what we’ll talk about for a while…

11

example application: ATM server
commands: withdraw, deposit

one correctness goal: don’t lose money

12

ATM server
(pseudocode)
ServerLoop() {

while (true) {
ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}
Deposit(accountNumber, amount) {

account = GetAccount(accountNumber);
account−>balance += amount;
SaveAccountUpdates(account);

}

13

a threaded server?
Deposit(accountNumber, amount) {

account = GetAccount(accountId);
account−>balance += amount;
SaveAccountUpdates(account);

}

maybe GetAccount/SaveAccountUpdates can be slow?
read/write disk sometimes? contact another server sometimes?

maybe lots of requests to process?
maybe real logic has more checks than Deposit()
…

all reasons to handle multiple requests at once

→ many threads all running the server loop
14

multiple threads
main() {

for (int i = 0; i < NumberOfThreads; ++i) {
pthread_create(&server_loop_threads[i], NULL,

ServerLoop, NULL);
}
...

}

ServerLoop() {
while (true) {

ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}

15

the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch

lost write to balance
“winner” of the race

lost track of thread A’s money

16

the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race

lost track of thread A’s money

16

the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race
lost track of thread A’s money

16

thinking about race conditions (1)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

17

thinking about race conditions (1)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

17

thinking about race conditions (2)
what are some possible values of x?
(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2

if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3
…and why not 7:

B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0

18

thinking about race conditions (2)
what are some possible values of x?
(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2
if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3

…and why not 7:
B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0

18

thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

19

thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

19

thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

19

thinking about race conditions (2)
what are some possible values of x?
(initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2
if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3
…and why not 7:

B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0

20

atomic operation
atomic operation = operation that runs to completion or not at all

we will use these to let threads work together

most machines: loading/storing (aligned) words is atomic
so can’t get 3 from x← 1 and x← 2 running in parallel
aligned ≈ address of word is multiple of word size (typically done by
compilers)

but some instructions are not atomic; examples:
x86: integer add constant to memory location
many CPUs: loading/storing values that cross cache blocks

e.g. if cache blocks 0x40 bytes, load/store 4 byte from addr. 0x3E is not atomic

21

lost adds (program)
.global update_loop
update_loop:

addl $1, the_value // the_value (global variable) += 1
dec %rdi // argument 1 -= 1
jg update_loop // if argument 1 >= 0 repeat
ret

int the_value;
extern void *update_loop(void *);
int main(void) {

the_value = 0;
pthread_t A, B;
pthread_create(&A, NULL, update_loop, (void*) 1000000);
pthread_create(&B, NULL, update_loop, (void*) 1000000);
pthread_join(A, NULL);
pthread_join(B, NULL);
// expected result: 1000000 + 1000000 = 2000000
printf("the_value = %d\n", the_value);

}

22

lost adds (results)

800000 1000000 1200000 1400000 1600000 1800000 2000000
0

1000

2000

3000

4000

5000

fre
qu

en
cy

the_value = ?

23

but how?
probably not possible on single core

exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

24

but how?
probably not possible on single core

exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

24

so, what is actually atomic
for now we’ll assume: load/stores of ‘words’

(64-bit machine = 64-bits words)

in general: processor designer will tell you

their job to design caches, etc. to work as documented

25

too much milk
roommates Alice and Bob want to keep fridge stocked with milk:
time Alice Bob
3:00 look in fridge. no milk
3:05 leave for store
3:10 arrive at store look in fridge. no milk
3:15 buy milk leave for store
3:20 return home, put milk in fridge arrive at store
3:25 buy milk
3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?

26

too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying
remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?

27

too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying
remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?
27

too much milk “solution” 1 (timeline)
if (no milk) {

if (no note) {

Alice Bob

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

leave note;
buy milk;
remove note;

}
}

28

too much milk “solution” 2 (algorithm)
intuition: leave note when buying or checking if need to buy
leave note;
if (no milk) {

if (no note) {
buy milk;

}
}
remove note;

29

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

30

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note

…will never buy milk (twice or once)

30

too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

30

“solution” 3: algorithm
intuition: label notes so Alice knows which is hers (and vice-versa)

computer equivalent: separate noteFromAlice and noteFromBob variables

leave note from Alice;
if (no milk) {

if (no note from Bob) {
buy milk

}
}
remove note from Alice;

Alice
leave note from Bob;
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob;

Bob

31

too much milk: “solution” 3 (timeline)
leave note from Alice
if (no milk) {

Alice Bob

leave note from Bob
if (no note from Bob) {

buy milk
}

}
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob

remove note from Alice

32

too much milk: is it possible
is there a solutions with writing/reading notes?

≈ loading/storing from shared memory

yes, but it’s not very elegant

33

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

34

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

34

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

34

too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

34

Peterson’s algorithm
general version of solution

see, e.g., Wikipedia

we’ll use special hardware support instead

35

some definitions
mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

36

some definitions
mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

36

some definitions
mutual exclusion: ensuring only one thread does a particular thing
at a time

like checking for and, if needed, buying milk

critical section: code that exactly one thread can execute at a
time

result of critical section

lock: object only one thread can hold at a time
interface for creating critical sections

36

the lock primitive
locks: an object with (at least) two operations:

acquire or lock — wait until lock is free, then “grab” it
release or unlock — let others use lock, wakeup waiters

typical usage: everyone acquires lock before using shared resource
forget to acquire lock? weird things happen

Lock(MilkLock);
if (no milk) {

buy milk
}
Unlock(MilkLock);

37

pthread mutex
#include <pthread.h>

pthread_mutex_t MilkLock;
pthread_mutex_init(&MilkLock, NULL);

// or: pthread_mutex_t MilkLock =
// PTHREAD_MUTEX_INITIALIZER;

...
pthread_mutex_lock(&MilkLock);
if (no milk) {

buy milk
}
pthread_mutex_unlock(&MilkLock);

38

xv6 spinlocks
#include "spinlock.h"
...
struct spinlock MilkLock;
initlock(&MilkLock, "name for debugging");
...
acquire(&MilkLock);
if (no milk) {

buy milk
}
release(&MilkLock);

39

exercise
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);
pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);
pthread_mutex_unlock(&lock1);

}

possible values of one/two after A+B run?
40

exercise (alternate 1)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);
pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);
pthread_mutex_unlock(&lock1);

}

possible values of one/two after A+B run?
41

exercise (alternate 2)
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;
string one = "init one", two = "init two";
void ThreadA() {

pthread_mutex_lock(&lock2);
two = "two in ThreadA"; // (A2)
pthread_mutex_unlock(&lock2);
pthread_mutex_lock(&lock1);
one = "one in ThreadA"; // (A1)
pthread_mutex_unlock(&lock1);

}
void ThreadB() {

pthread_mutex_lock(&lock1);
one = "one in ThreadB"; // (B1)
pthread_mutex_unlock(&lock1);
pthread_mutex_lock(&lock2);
two = "two in ThreadB"; // (B2)
pthread_mutex_unlock(&lock2);

}

possible values of one/two after A+B run?
42

43

backup slides

44

what’s wrong with this?
/* omitted: headers */
#include <string>
using std::string;
void *create_string(void *ignored_argument) {
string result;
result = ComputeString();
return &result;

}
int main() {
pthread_t the_thread;
pthread_create(&the_thread, NULL, create_string, NULL);
string *string_ptr;
pthread_join(the_thread, (void*) &string_ptr);
cout << "string is " << *string_ptr;

}

45

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

46

program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

46

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

47

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

47

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

47

sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

47

program memory (to main stack)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

first thread stack

second thread stack

Heap / other dynamic
Code / Data

info array values (stack? heap?)

my_info

my_info

48

	last time
	everything on the heap
	on thread resources, detached threads
	join, detach, etc.

	on error checking

	introduction: correctness
	the lost write
	motivation: threaded ATM server?
	example

	race conditions and atomicity
	thinking about simple races
	atomicity definition
	example: x86 add not atomic
	what is atomic?

	too much milk: locks from load/store?
	setup: buying milk
	wrong solution 1: missed notes
	wrong solution 2: read own note
	wrong solution 3: too little milk
	correct solution: Peterson's algorithm

	definitions: mutual exclusion, critical section
	locks
	exercise

	backup sides
	thread + dangling pointer exercise
	no globals + info struct as argument

